1
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:210-234. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Nasim I, Ghani N, Nawaz R, Mateev E, Bin Jardan YA. Investigating the impact of Multiwalled Carbon Nanotubes exposure on enzymatic activities and histopathological variations in Swiss albino mice. Sci Rep 2025; 15:2324. [PMID: 39824850 PMCID: PMC11748639 DOI: 10.1038/s41598-024-77526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/23/2024] [Indexed: 01/20/2025] Open
Abstract
Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.45 µg and 0.90 µg, and the distilled water was given to the control group. Serum samples were extracted at 7 and 14 days after the experiment by centrifuging whole blood for 15 min at 3,000 rpm. An enzyme-linked immunosorbent test (ELISA) was used to measure many enzyme assays, such as Angiotensin Converting Enzymes (ACE), Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase enzyme. Hematoxylin and Eosin (H&E) staining of tissue samples was done along with a histopathological examination. During a 14-day exposure, ACE, NADPH Oxidase, ALT, and AST enzyme levels were significantly higher in the exposed groups (0.45 µg and 0.90 µg) than in the control group (p < 0.05). Male mice exposed to MWCNT-NP showed substantial histological damage in the relevant organs as well as elevated enzyme activity levels. Present study showed a comprehensive and practical assessment of the toxicity associated with MWCNT-NP of different geometries and functionalization.
Collapse
Affiliation(s)
- Iqra Nasim
- Department of Environmental Science, Lahore College for Women University, Lahore, 54000, Pakistan
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Nadia Ghani
- Department of Environmental Science, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
He Y, Wang Y, Wang L, Jiang W, Wilhelm S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin Drug Deliv 2024; 21:829-843. [PMID: 38946471 PMCID: PMC11281865 DOI: 10.1080/17425247.2024.2375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.
Collapse
Affiliation(s)
- Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Wan S, Rodrigues DB, Kwiatkowski J, Khanna O, Judy KD, Goldstein RC, Overbeek Bloem M, Yu Y, Rooks SE, Shi W, Hurwitz MD, Stauffer PR. Evaluation of a Balloon Implant for Simultaneous Magnetic Nanoparticle Hyperthermia and High-Dose-Rate Brachytherapy of Brain Tumor Resection Cavities. Cancers (Basel) 2023; 15:5683. [PMID: 38067387 PMCID: PMC10705301 DOI: 10.3390/cancers15235683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/12/2024] Open
Abstract
Previous work has reported the design of a novel thermobrachytherapy (TBT) balloon implant to deliver magnetic nanoparticle (MNP) hyperthermia and high-dose-rate (HDR) brachytherapy simultaneously after brain tumor resection, thereby maximizing their synergistic effect. This paper presents an evaluation of the robustness of the balloon device, compatibility of its heat and radiation delivery components, as well as thermal and radiation dosimetry of the TBT balloon. TBT balloon devices with 1 and 3 cm diameter were evaluated when placed in an external magnetic field with a maximal strength of 8.1 kA/m at 133 kHz. The MNP solution (nanofluid) in the balloon absorbs energy, thereby generating heat, while an HDR source travels to the center of the balloon via a catheter to deliver the radiation dose. A 3D-printed human skull model was filled with brain-tissue-equivalent gel for in-phantom heating and radiation measurements around four 3 cm balloons. For the in vivo experiments, a 1 cm diameter balloon was surgically implanted in the brains of three living pigs (40-50 kg). The durability and robustness of TBT balloon implants, as well as the compatibility of their heat and radiation delivery components, were demonstrated in laboratory studies. The presence of the nanofluid, magnetic field, and heating up to 77 °C did not affect the radiation dose significantly. Thermal mapping and 2D infrared images demonstrated spherically symmetric heating in phantom as well as in brain tissue. In vivo pig experiments showed the ability to heat well-perfused brain tissue to hyperthermic levels (≥40 °C) at a 5 mm distance from the 60 °C balloon surface.
Collapse
Affiliation(s)
- Shuying Wan
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Dario B. Rodrigues
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | | | - Omaditya Khanna
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (O.K.); (K.D.J.)
| | - Kevin D. Judy
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (O.K.); (K.D.J.)
| | | | | | - Yan Yu
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Sophia E. Rooks
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Mark D. Hurwitz
- Radiation Medicine, Westchester Medical Center University Hospital, Valhalla, NY 10595, USA;
| | - Paul R. Stauffer
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| |
Collapse
|
5
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. On the Road to Precision Medicine: Magnetic Systems for Tissue Regeneration, Drug Delivery, Imaging, and Theranostics. Pharmaceutics 2023; 15:1812. [PMID: 37513999 PMCID: PMC10383406 DOI: 10.3390/pharmaceutics15071812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Magnetic systems have always been considered as attractive due to their remarkable versatility [...].
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|