1
|
Azouz AA, El komy MH, Elmowafy M, Mahmoud MO, Ali FE, Aboud HM. Crafting cationic lecithmer nanocomposites as promising wagons for brain targeting of cinnamaldehyde: Accentuated neuroprotection via downregulation of Aβ1-42/p-tau crosstalk. J Drug Deliv Sci Technol 2025; 106:106664. [DOI: 10.1016/j.jddst.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
2
|
Aboud HM, Ali AA, Mohammed NH, Hassan AHE, Roh EJ, El Menshawe SF. Investigating the Potential of Ufasomes Laden with Nintedanib as an Optimized Targeted Lung Nanoparadigm for Accentuated Tackling of Idiopathic Pulmonary Fibrosis. Pharmaceuticals (Basel) 2024; 17:1605. [PMID: 39770447 PMCID: PMC11677946 DOI: 10.3390/ph17121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/objectives: Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease that typically progresses gradually, leading to respiratory failure and ultimately death. IPF can be treated with the tyrosine kinase inhibitor, nintedanib (NTD), owing to its anti-fibrotic properties, which ameliorate the impairment of lung function. This study aimed to formulate, optimize, and assess NTD-loaded ufasomes (NTD-UFSs) as a nanosystem for its pulmonary targeting to snowball the bioavailability and therapeutic efficacy of the drug. Methods: To investigate the influence of numerous factors on NTD-UFSs assembly and to determine the optimal formulation, Box-Behnken statistical design was implemented with the assistance of Design-Expert® software. The thin-film hydration strategy was employed to fabricate NTD-UFSs. The optimum NTD-UFSs formulation was subsequently selected and subjected to additional evaluations. Also, using a rat model, a comparative pharmacokinetic analysis was scrutinized. Results: The optimal NTD-UFSs elicited an accumulative release of 65.57% after 24 h, an encapsulation efficiency of 62.51%, a zeta potential of -36.07 mV, and a vesicular size of 364.62 nm. In addition, it disclosed remarkable stability and a continuous cumulative release pattern. In vivo histopathological studies ascertained the tolerability of NTD-UFSs administered intratracheally. According to the pharmacokinetic studies, intratracheal NTD-UFSs administration manifested a significantly higher AUC0-∞ value than oral and intratracheal NTD suspensions, by approximately 5.66- and 3.53-fold, respectively. Conclusions: The findings of this study proposed that UFSs might be a promising nanoparadigm for the non-invasive pulmonary delivery of NTD.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.A.); (A.A.A.); (S.F.E.M.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.A.); (A.A.A.); (S.F.E.M.)
| | - Nada H. Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.A.); (A.A.A.); (S.F.E.M.)
| |
Collapse
|
3
|
Aboud HM, El Menshawe SF, Mohammed NH, Tulbah AS, Ali AA. Optimization and Appraisal of Nintedanib-Loaded Mixed Polymeric Micelles as a Potential Nanovector for Non-Invasive Pulmonary Fibrosis Mitigation. Pharmaceuticals (Basel) 2024; 17:1275. [PMID: 39458916 PMCID: PMC11510293 DOI: 10.3390/ph17101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nintedanib (NTD), a triple tyrosine kinase receptor inhibitor, is the recommended first-line tackling option for idiopathic pulmonary fibrosis (IPF). Nevertheless, the adequacy of NTD is curtailed by issues associated with its low solubility, first-pass effect, poor bioavailability, and liver toxicity. The objective of our work was to develop a non-invasive intratracheal (i.t.) nanoparadigm based on NTD-loaded polymeric mixed micelles (NTD-PMMs) that can effectively treat IPF by sustaining the release of NTD, and snowballing its bioavailability, solubility, and efficacy. METHODS Design-Expert® software was used to optimize various NTD-PMMs formulations via Box-Behnken design adopting the thin-film hydration technique. The optimum formulation was chosen and in vivo tested in a rat model to explore its comparative bioavailability and toxicity. RESULTS The formulation composition with 309.217 mg of Soluplus, 150 mg of Tween 80, and 40 mg of sodium deoxycholate was found to fulfill the requisites of an optimum NTD-PMMs formulation. The optimum NTD-PMMs formulation divulged 90.26% entrapment efficiency with a surface charge of -14.72 mV and a nanoscale diameter of 61.36 nm. Also, it substantially sustained the release of NTD by 66.84% after 24 h and manifested a pronounced stability. In vivo histopathology investigations verified the safety of NTD-PMMs delivered intratracheally. Moreover, pharmacokinetic analyses disclosed accentuated relative bioavailability of the optimized NTD-PMMs by 2.4- and 3.82-fold as compared with both the i.t. and oral crude NTD suspensions, respectively. CONCLUSIONS Overall, the current results elicited the potential of PMMs to serve as a promising pulmonary nanovector for the targeted delivery of NTD.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| | - Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| | - Nada H. Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Alaa S. Tulbah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| |
Collapse
|
4
|
Salem HF, Aboud HM, Abdellatif MM, Abou-Taleb HA. Nose-to-Brain Targeted Delivery of Donepezil Hydrochloride via Novel Hyaluronic Acid-Doped Nanotransfersomes for Alzheimer's Disease Mitigation. J Pharm Sci 2024; 113:1934-1945. [PMID: 38369023 DOI: 10.1016/j.xphs.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease is the most serious neurodegenerative disorder characterized by cognitive and memorial defects alongside deterioration in behavioral, thinking and social skills. Donepezil hydrochloride (DPZ) is one of the current two FDA-approved cholinesterase inhibitors used for the management of Alzheimer's disease. The current study aimed to formulate hyaluronic acid-coated transfersomes containing DPZ (DPZ-HA-TFS) for brain delivery through the intranasal pathway to surpass its oral-correlated GIT side effects. DPZ-HA-TFS were produced using a thin film hydration method and optimized with a 24 factorial design. The influence of formulation parameters on vesicle diameter, entrapment, cumulative release after 8 h, and ex vivo nasal diffusion after 24 h was studied. The optimal formulation was then evaluated for morphology, stability, histopathology and in vivo biodistribution studies. The optimized DPZ-HA-TFS formulation elicited an acceptable vesicle size (227.5 nm) with 75.83% entrapment efficiency, 37.94% cumulative release after 8 h, 547.49 µg/cm2 permeated through nasal mucosa after 24 h and adequate stability. Histopathological analysis revealed that the formulated DPZ-HA-TFS was nontoxic and tolerable for intranasal delivery. Intranasally administered DPZ-HA-TFS manifested significantly superior values for drug targeting index (5.08), drug targeting efficiency (508.25%) and direct nose-to-brain transport percentage (80.32%). DPZ-HA-TFS might be deemed as a promising intranasal nano-cargo for DPZ cerebral delivery to tackle Alzheimer's disease safely, steadily and in a non-invasive long-term pattern.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mostafa M Abdellatif
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University, Sohag, Egypt
| |
Collapse
|
5
|
Bhalani D, Kakkad H, Modh J, Ray D, Aswal VK, Pillai SA. Molecular insights into the aggregation and solubilizing behavior of biocompatible amphiphiles Gelucire® 48/16 and Tetronics® 1304 in aqueous media. RSC Adv 2023; 13:28590-28601. [PMID: 37780735 PMCID: PMC10540152 DOI: 10.1039/d3ra04844f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
A comparative analysis of the micellar and solubilizing properties of two polyethylene glycol (PEG)-based amphiphilic biocompatible excipients: Gelucire® 48/16 (Ge 48/16) and Tetronics® 1304 (T1304), in the presence and absence of salt, was conducted. As there is a dearth of research in this area, the study aims to shed light on the behavior of these two nonionic surfactants and their potential as nanocarriers for solubilizing pharmaceuticals. Various techniques such as cloud point (CP), dynamic light scattering (DLS), small-angle neutron scattering (SANS), Fourier transform infrared spectroscopy (FT-IR), UV spectrophotometry, and high-performance liquid chromatography (HPLC) were employed. The solubility of quercetin (QCT), a flavonoid with anti-inflammatory, antioxidant, and anti-cancer properties, was evaluated and the interaction between QCT and the micellar system was examined. The analysis revealed the occurrence of strong interactions between QCT and surfactant molecules, resulting in enhanced solubility. It was observed that the micellar size and solubilizing ability were significantly improved in the presence of salt, while the CP decreased. Ge 48/16 exhibited superior performance, with a remarkable increase in the solubility of QCT in the presence of salt, suggesting its potential as an effective nanocarrier for a range of pharmaceutics, and yielding better therapeutic outcomes.
Collapse
Affiliation(s)
- Deep Bhalani
- School of Sciences, P. P. Savani University NH-8, GETCO, Near Biltech, Kosamba Surat 394125 Gujarat India
| | - Hiral Kakkad
- School of Sciences, P. P. Savani University NH-8, GETCO, Near Biltech, Kosamba Surat 394125 Gujarat India
| | - Jignasa Modh
- School of Sciences, P. P. Savani University NH-8, GETCO, Near Biltech, Kosamba Surat 394125 Gujarat India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC) Mumbai 400085 Maharashtra India
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich Jülich 52428 Germany
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC) Mumbai 400085 Maharashtra India
| | - Sadafara A Pillai
- School of Sciences, P. P. Savani University NH-8, GETCO, Near Biltech, Kosamba Surat 394125 Gujarat India
| |
Collapse
|
6
|
Omari D, Sallam A, Al-Hmoud H, Rashid I. Modafinil-excipient compatibility study using differential scanning calorimetry. J Adv Pharm Technol Res 2023; 14:75-81. [PMID: 37255876 PMCID: PMC10226699 DOI: 10.4103/japtr.japtr_663_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 06/01/2023] Open
Abstract
Drug excipient compatibility studies are considered important in successful formulation of drug products. Suggested methods for this purpose are thermal techniques under isothermal or nonisothermal conditions. In this study, modafinil, a wakefulness-promoting drug, was investigated under nonisothermal conditions using differential scanning calorimetry. Four different heating rates, 5, 10, 15, and 20°C/min, were performed for modafinil pure material and its physical mixtures with magnesium stearate (MgSt) or Gelucire 48/16. Activation energy (Ea) was calculated from the straight line of plotting a function of heating rate versus temperature and found that modafinil-Gelucire physical mixture increased Ea. This indicates drug-excipient interaction, supported by evidence from Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. No significant interaction was detected with MgSt.
Collapse
Affiliation(s)
- Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - Hasan Al-Hmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Iyad Rashid
- Jordan Pharmaceutical Manufacturing Co., Amman, Jordan
| |
Collapse
|