1
|
Yan X, Zhao X, Fan M, Zheng W, Zhu G, Li B, Wang L. Acidic Environment-Responsive Metal Organic Framework-Mediated Dihydroartemisinin Delivery for Triggering Production of Reactive Oxygen Species in Drug-Resistant Lung Cancer. Int J Nanomedicine 2024; 19:3847-3859. [PMID: 38708182 PMCID: PMC11068046 DOI: 10.2147/ijn.s451042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.
Collapse
Affiliation(s)
- Xiaojie Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Xueying Zhao
- Department of Transfusion, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Mingde Fan
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wenfu Zheng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, People’s Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Le Wang
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
2
|
Cai ZM, Li ZZ, Zhong NN, Cao LM, Xiao Y, Li JQ, Huo FY, Liu B, Xu C, Zhao Y, Rao L, Bu LL. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. J Nanobiotechnology 2024; 22:135. [PMID: 38553735 PMCID: PMC10979629 DOI: 10.1186/s12951-024-02408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.
Collapse
Affiliation(s)
- Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, 4066, Australia
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
3
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
4
|
Jia J, Chen W, Xu L, Wang X, Li M, Wang B, Huang X, Wang T, Chen Y, Li M, Tian D, Zhuang J, Lin X, Li N. Codelivery of dihydroartemisinin and chlorin e6 by copolymer nanoparticles enables boosting photodynamic therapy of breast cancer with low-power irradiation. Regen Biomater 2023; 10:rbad048. [PMID: 37250978 PMCID: PMC10224804 DOI: 10.1093/rb/rbad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
Given that chemotherapy as a stand-alone therapeutic strategy may not be sufficient to effectively treat cancer, there is increasing interest in combination of chemotherapy and alternative therapies. Photodynamic therapy has the advantages of high selectivity and low side effects, so the combination of photodynamic therapy and chemotherapy has become one of the most appealing strategies for tumor treatment. In this work, we constructed a nano drug codelivery system (PPDC) to realize the combined treatment of chemotherapy and photodynamic therapy through encapsulating chemotherapeutic drug dihydroartemisinin and photosensitizer chlorin e6 in PEG-PCL. The potentials, particle size and morphology of nanoparticles were characterized by dynamic light scattering and transmission electron microscopy. We also investigated the reactive oxygen species (ROS) generation and drug release ability. The antitumor effect in vitro was investigated by methylthiazolyldiphenyl-tetrazolium bromide assays and cell apoptosis experiments, and the potential cell death mechanisms were explored by ROS detection and Western blot analysis. The in vivo antitumor effect of PPDC was evaluated under the guidance of fluorescence imaging. Our work provides a potential antitumor treatment approach and expands the application of dihydroartemisinin for breast cancer therapy.
Collapse
Affiliation(s)
| | | | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xuewen Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Min Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bin Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiangyu Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Tao Wang
- School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou 350002, China
| | - Yang Chen
- Department of Hepatobiliary Surgery, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Mengdie Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Xinhua Lin
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Ning Li
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| |
Collapse
|
5
|
Tang K, Li X, Hu Y, Zhang X, Lu N, Fang Q, Shao J, Li S, Xiu W, Song Y, Yang D, Zhang J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater Sci 2023. [PMID: 37067845 DOI: 10.1039/d3bm00509g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaonan Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
6
|
Zhang M, Zhou Y, Wu B, Lu C, Quan G, Huang Z, Wu C, Pan X. An oxygen-generating metal organic framework nanoplatform as a “synergy motor” for extricating dilemma over photodynamic therapy. MATERIALS ADVANCES 2023; 4:5420-5430. [DOI: 10.1039/d3ma00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photodynamic therapy (PDT) combined with metal organic frameworks (MOFs) addresses current obstacles.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yixian Zhou
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Biyuan Wu
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xin Pan
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|