1
|
Moni SS, Moshi JM, Matou-Nasri S, Alotaibi S, Hawsawi YM, Elmobark ME, Hakami AMS, Jeraiby MA, Sulayli AA, Moafa HN. Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems. Pharmaceutics 2025; 17:296. [PMID: 40142960 PMCID: PMC11945159 DOI: 10.3390/pharmaceutics17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Jobran M. Moshi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, Jazan 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia;
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Shmoukh Alotaibi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Mohammed A. Jeraiby
- Department of Basic Medical Science, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ahmed A. Sulayli
- Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan Health Cluster, Jazan 82734, Saudi Arabia;
| | - Hassan N. Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Coskun A, Kayhan H, Senturk F, Esmekaya MA, Canseven AG. The Efficacy of Electrochemotherapy with Dacarbazine on Melanoma Cells. Bioelectricity 2024; 6:118-125. [PMID: 39119570 PMCID: PMC11305008 DOI: 10.1089/bioe.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Electrochemotherapy (ECT) involves locally applying electrical pulses to permeabilize cell membranes, using electroporation (EP). This process enhances the uptake of low-permeant chemotherapeutic agents, consequently amplifying their cytotoxic effects. In melanoma treatment, dacarbazine (DTIC) is a cornerstone, but it faces limitations because of poor cell membrane penetration, necessitating the use of high doses, which, in turn, leads to increased side effects. In our study, we investigated the effects of DTIC and EP, both individually and in combination, on the melanoma cell line (SK-MEL-30) as well as human dermal fibroblasts (HDF) using in vitro assays. First, the effects of different DTIC concentrations on the viability of SK-MEL-30 and HDF cells were determined, revealing that DTIC was more effective against melanoma cells at lower concentrations, whereas its cytotoxicity at 1000 μM was similar in both cell types. Next, an ideal electric field strength of 1500 V/cm achieved a balance between permeability (84%) and melanoma cell viability (79%), paving the way for effective ECT. The combined DTIC-EP (ECT) application reduced IC50 values by 2.2-fold in SK-MEL-30 cells and 2.7-fold in HDF cells compared with DTIC alone. In conclusion, ECT not only increased DTIC's cytotoxicity against melanoma cells but also affected healthy fibroblasts. These findings emphasize the need for cautious, targeted ECT management in melanoma therapy.
Collapse
Affiliation(s)
- Alaaddin Coskun
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Meric Arda Esmekaya
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
3
|
Li W, Zheng C, Xu X, Xia Y, Zhang K, Huang A, Zhang X, Zheng Y, Chen G, Zhang S. Combined therapy of dabrafenib and an anti-HER2 antibody-drug conjugate for advanced BRAF-mutant melanoma. Cell Mol Biol Lett 2024; 29:50. [PMID: 38594618 PMCID: PMC11005275 DOI: 10.1186/s11658-024-00555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Melanoma is the most lethal skin cancer characterized by its high metastatic potential. In the past decade, targeted and immunotherapy have brought revolutionary survival benefits to patients with advanced and metastatic melanoma, but these treatment responses are also heterogeneous and/or do not achieve durable responses. Therefore, novel therapeutic strategies for improving outcomes remain an unmet clinical need. The aim of this study was to evaluate the therapeutic potential and underlying molecular mechanisms of RC48, a novel HER2-target antibody drug conjugate, either alone or in combination with dabrafenib, a V600-mutant BRAF inhibitor, for the treatment of advanced BRAF-mutant cutaneous melanoma. METHODS We evaluated the therapeutic efficacy of RC48, alone or in combination with dabrafenib, in BRAF-mutant cutaneous melanoma cell lines and cell-derived xenograft (CDX) models. We also conducted signaling pathways analysis and global mRNA sequencing to explore mechanisms underlying the synergistic effect of the combination therapy. RESULTS Our results revealed the expression of membrane-localized HER2 in melanoma cells. RC48 effectively targeted and inhibited the growth of HER2-positive human melanoma cell lines and corresponding CDX models. When used RC48 and dabrafenib synergically induced tumor regression together in human BRAF-mutant melanoma cell lines and CDX models. Mechanically, our results demonstrated that the combination therapy induced apoptosis and cell cycle arrest while suppressing cell motility in vitro. Furthermore, global RNA sequencing analysis demonstrated that the combination treatment led to the downregulation of several key signaling pathways, including the PI3K-AKT pathway, MAPK pathway, AMPK pathway, and FOXO pathway. CONCLUSION These findings establish a preclinical foundation for the combined use of an anti-HER2 drug conjugate and a BRAF inhibitor in the treatment of BRAF-mutant cutaneous melanoma.
Collapse
Affiliation(s)
- Weisong Li
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Chao Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Xi Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yujie Xia
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ao Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Zhang
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Yong Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett 2023; 574:216397. [PMID: 37730105 DOI: 10.1016/j.canlet.2023.216397] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Melanoma, the most aggressive form of cutaneous malignancy arising from melanocytes, is frequently characterized by metastasis. Despite considerable progress in melanoma therapies, patients with advanced-stage disease often have a poor prognosis due to the limited efficacy, off-target effects, and toxicity associated with conventional drugs. Nanotechnology has emerged as a promising approach to address these challenges with nanoparticles capable of delivering therapeutic agents specifically to the tumor microenvironment (TME). However, the clinical approval of nanomedicines for melanoma treatment remains limited, necessitating further research to develop nanoparticles with improved biocompatibility and precise targeting capabilities. This comprehensive review provides an overview of the current research on nano-drug delivery systems for melanoma treatment, focusing on liposomes, polymeric nanoparticles, and inorganic nanoparticles. It discusses the potential of these nanoparticles for targeted drug delivery, as well as their ability to enhance the efficacy of conventional drugs while minimizing toxicity. Furthermore, this review emphasizes the significance of interdisciplinary collaboration between researchers from various fields to advance the development of nanomedicines. Overall, this review serves as a valuable resource for researchers and clinicians interested in the potential of nano-drug delivery systems for melanoma treatment and offers insights into future directions for research in this field.
Collapse
Affiliation(s)
- Mengdan Xu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, China.
| |
Collapse
|