1
|
Jiang Y, Dong S, Wang Y. Antibody-Drug Conjugates Targeting CD30 in T-Cell Lymphomas: Clinical Progression and Mechanism. Cancers (Basel) 2025; 17:496. [PMID: 39941862 PMCID: PMC11815818 DOI: 10.3390/cancers17030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
CD30 is overexpressed in many T-cell lymphoma (TCL) entities, including subsets of peripheral T-cell lymphomas (PTCL) and cutaneous T-cell lymphomas (CTCL). The antibody-drug conjugate brentuximab vedotin (BV), targeting CD30-positive cells, has been approved for the treatment of relapsed or refractory (R/R) systemic anaplastic large cell lymphoma (sALCL), and primary cutaneous anaplastic large cell lymphoma or mycosis fungoides in patients who have received previous systemic therapy. However, many patients still experience disease progression after BV monotherapy. Extensive efforts have been dedicated to investigating effective combinations of BV. A phase III clinical study demonstrated that the combination of BV with cyclophosphamide, doxorubicin, and prednisone (CHP) is superior to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) for CD30-positive PTCL. This study led to the approval of BV with CHP as the first-line therapy for CD30-positive PTCL (sALCL in Europe). We summarize the encouraging combination applications of BV in this review. Ongoing studies on combination therapies of BV are also listed, highlighting potential directions for the future application of BV. We focus on dissecting the underlying mechanisms of BV, discussing its effects on both tumor cells and the tumor microenvironment. Exploring resistance mechanisms in TCL provide valuable insights for optimizing BV-based therapies in the future.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
| | - Sai Dong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- The Second Clinical Medical School, Peking University, Beijing 100044, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
3
|
Moon Y, Cho H, Kim K. Nano-Delivery of Immunogenic Cell Death Inducers and Immune Checkpoint Blockade Agents: Single-Nanostructure Strategies for Enhancing Immunotherapy. Pharmaceutics 2024; 16:795. [PMID: 38931916 PMCID: PMC11207855 DOI: 10.3390/pharmaceutics16060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer immunotherapy has revolutionized oncology by harnessing the patient's immune system to target and eliminate cancer cells. However, immune checkpoint blockades (ICBs) face limitations such as low response rates, particularly in immunologically 'cold' tumors. Enhancing tumor immunogenicity through immunogenic cell death (ICD) inducers and advanced drug delivery systems represents a promising solution. This review discusses the development and application of various nanocarriers, including polymeric nanoparticles, liposomes, peptide-based nanoparticles, and inorganic nanoparticles, designed to deliver ICD inducers and ICBs effectively. These nanocarriers improve therapeutic outcomes by converting cold tumors into hot tumors, thus enhancing immune responses and reducing systemic toxicity. By focusing on single-nanoparticle systems that co-deliver both ICD inducers and ICBs, this review highlights their potential in achieving higher drug concentrations at tumor sites, improving pharmacokinetics and pharmacodynamics, and facilitating clinical translation. Future research should aim to optimize these nanocarrier systems for better in vivo performance and clinical applications, ultimately advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Yujeong Moon
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea;
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea;
| |
Collapse
|
4
|
Xing L, Lv L, Ren J, Yu H, Zhao X, Kong X, Xiang H, Tao X, Dong D. Advances in targeted therapy for pancreatic cancer. Biomed Pharmacother 2023; 168:115717. [PMID: 37862965 DOI: 10.1016/j.biopha.2023.115717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pancreatic cancer (PC) represents a group of malignant tumours originating from pancreatic duct epithelial cells and acinar cells, and the 5-year survival rate of PC patients is only approximately 12%. Molecular targeted drugs are specific drugs designed to target and block oncogenes, and they have become promising strategies for the treatment of PC. Compared to traditional chemotherapy drugs, molecular targeted drugs have greater targeting precision, and they have significant therapeutic effects and minimal side effects. This article reviews several molecular targeted drugs that are currently in the experimental stage for the treatment of PC; these include antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) and peptide-drug conjugates (PDCs). ADCs can specifically recognize cell surface antigens and reduce systemic exposure and toxicity of chemotherapy drugs. By delivering nucleic acid drugs to target cells, the targeting RNA of ApDCs can inhibit the expression or translation of mutated genes, thereby inhibiting tumour development. Moreover, PDCs can effectively penetrate tumour cells, and the peptide groups in PDCs preferentially target tumour cells with minimal side effects. In the targeted therapy of PC, molecular targeted drugs have very broad prospects, which provides new hope for the clinical treatment of PC patients and is worth further research.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiaqi Ren
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hao Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
5
|
Bettio D, Page G, Thoreau V. Blue marine therapy: Sea as a trove of natural anticancer drugs. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:935-941. [PMID: 37328028 DOI: 10.1016/j.pharma.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The great variability of marine habitats and the species that live there allows the development of organisms with unique characteristics. These represent an excellent source of natural compounds and are therefore interesting in the search for new bioactive molecules. In recent years, many marine-based drugs have been commercialized or are currently under investigation, mainly in the treatment of cancer. This mini-review summarizes the marine-based drugs currently marketed and presents a non-exhaustive list of molecules currently in clinical trials, as monotherapy but also in combination with classical anticancer treatments.
Collapse
Affiliation(s)
- Delphine Bettio
- University of Poitiers, Medicine and Pharmacy Faculty, bâtiment D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France.
| | - Guylène Page
- University of Poitiers, Medicine and Pharmacy Faculty, bâtiment D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France; University of Poitiers, Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle biologie santé, 1, rue Georges-Bonnet, TSA 51106, 86073 Poitiers cedex 9, France
| | - Vincent Thoreau
- University of Poitiers, Medicine and Pharmacy Faculty, bâtiment D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France; University of Poitiers, Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle biologie santé, 1, rue Georges-Bonnet, TSA 51106, 86073 Poitiers cedex 9, France
| |
Collapse
|
6
|
Park SH, Lee JH, Yang SB, Lee DN, Kang TB, Park J. Development of a Peptide-Based Nano-Sized Cathepsin B Inhibitor for Anticancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15041131. [PMID: 37111617 PMCID: PMC10141979 DOI: 10.3390/pharmaceutics15041131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Numerous cathepsin B inhibitors have been developed and are under investigation as potential cancer treatments. They have been evaluated for their ability to inhibit cathepsin B activity and reduce tumor growth. However, they have shown critical limitations, including low anticancer efficacy and high toxicity, due to their low selectivity and delivery problems. In this study, we developed a novel peptide and drug conjugate (PDC)-based cathepsin B inhibitor using cathepsin-B-specific peptide (RR) and bile acid (BA). Interestingly, this RR and BA conjugate (RR–BA) was able to self-assemble in an aqueous solution, and as a result, it formed stable nanoparticles. The nano-sized RR–BA conjugate showed significant cathepsin B inhibitory effects and anticancer effects against mouse colorectal cancer (CT26) cells. Its therapeutic effect and low toxicity were also confirmed in CT26 tumor-bearing mice after intravenous injection. Therefore, based on these results, the RR–BA conjugate could be developed as an effective anticancer drug candidate for inhibiting cathepsin B in anticancer therapy.
Collapse
Affiliation(s)
- So-Hyeon Park
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong-Bin Yang
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Nyeong Lee
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Tae-Bong Kang
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
7
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|