1
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Exploring the potential of antifungal-loaded proniosomes to consolidate corneal permeation in fungal keratitis: A comprehensive investigation from laboratory characterization to microbiological evaluation. Int J Pharm X 2025; 9:100322. [PMID: 40094144 PMCID: PMC11909449 DOI: 10.1016/j.ijpx.2025.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
This work aimed to prepare Terconazole loaded proniosomes (TCZ-PNS) utilizing modified coacervation technique for the management of fungal keratitis. Terconazole (TCZ) is a potent antifungal with poor aqueous solubility posing intricacies in its incorporation in ocular formulations. A 23 factorial design was adopted to probe independent formulation variables including A: Lecithin: cholesterol ratio, B: Surfactant: cholesterol ratio and C: Span® 80 contribution (% of total SAA). The formulae, generated by the design, were prepared and scrutinized regarding entrapment efficiency (%EE), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). Numerical desirability algorithms selected an optimum TCZ-PNS which boasted plausible %EE (89.51 % ± 0.94 %), nanoscale vesicles consistent with TEM measurements (247.9 ± 0.42 nm), a sufficiently high ZP (-43.42 ± 0.85 mV), and an in-vitro biphasic release profile that remained stable even after Gamma irradiation and short-term storage. The transcorneal ex-vivo permeation of TCZ-PNS was higher than that of TCZ suspension (≈ 2-fold). The formulation was further evaluated for pH, corneal hydration threshold, and histopathological safety, confirming its suitability for ocular application. Confocal laser microscopy revealed substantial corneal uptake (approximately twice as deep as of TCZ suspension). Additionally, microbiological assessments of the optimal TCZ-PNS compared to TCZ suspension demonstrated an inhibition zone nearly 50 % larger, a significantly lower MIC and MFC (64-fold reduction), and enhanced biofilm inhibition activity across most tested concentrations. These findings suggest that TCZ-PNS could be a propitious treatment choice to deeply deliver antifungal therapy for the eradication of deeply rooted and inaccessible fungal keratitis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Terconazole loaded edge-activated hybrid elastosome for revamped corneal permeation in ocular mycosis: In-vitro characterization, statistical optimization, microbiological assessment, and in-vivo evaluation. Int J Pharm X 2025; 9:100333. [PMID: 40292341 PMCID: PMC12023791 DOI: 10.1016/j.ijpx.2025.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Herein, we investigated the preparation and characterization of Terconazole loaded edge-activated hybrid elastosome (TCN-EHE) adopting thin film hydration technique for the treatment of ocular mycosis. Terconazole (TCN) is a broad spectrum antimycotic agent suffering from sparse aqueous solubility impeding its use in ophthalmic preparations. The scrutinized formulation variables namely X1: Surfactant: Edge activator ratio (SAA: EA), X2: Pluronic® L121 contribution (% of total SAA) and X3: EA concentration (%w/v) were optimized adopting D-optimal design. Ten runs were prepared and characterized regarding their entrapment efficiency, particle size, polydispersity index and zeta potential. An optimized formula was generated, with high desirability, exhibited satisfactory entrapment efficiency, nanoscaled particle size aligning with TEM, plausible zeta potential and bi-phasic release pattern which were not altered after short-term storage. The optimized TCN-EHE displayed 1.94-fold enhanced ex-vivo corneal permeation flux. Safety was ratified through measured corneal hydration level, pH and histopathological evaluation. In-vivo corneal uptake visualized by confocal laser microscopy demonstrated 2.7-fold deeper penetration. Moreover, Superior antifungal activity has been demonstrated displaying 37 % bigger zone of inhibition, 8-fold lower minimum inhibitory and minimum fungal concentration alongside significantly higher biofilm inhibition activity at all tested concentrations for the optimized TCN-EHE compared to TCN suspension. Conclusively, we could prospect that TCN-EHE might be a revamped therapeutic alternative for the delivery of poorly soluble antimycotic agents for the combat of ocular mycosis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M. Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Helal DA, Osama A, El-Nabarawi MA, Teaima MH, Ibrahim Al-Samadi IE. Dual-action of clotrimazole loaded - nanosponges vaginal gel for spermicidal action and treatment of vaginal candidiasis: Optimization, in-vitro, ex-vivo, and in-vivo experiments. Int J Pharm 2025; 670:125193. [PMID: 39788399 DOI: 10.1016/j.ijpharm.2025.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Clotrimazole (CLO) is a strong antifungal drug approved to treat vaginal candidiasis (VC). Nanosponges (NSs) were developed to maintain providing CLO in a steady pattern with amplified accumulation in the vaginal mucosa. The quasi-emulsion solvent diffusion method was utilized to prepare NSs. The optimized NSs selected by Design Expert® exhibited a production yield percent (PY%) of 60.10 ± 0.39 %, encapsulation efficiency percent (EE%) of 91.21 ± 0.59 %, particle size (PS) 275.50 ± 0.97 nm, polydispersity index (PDI) 0.425 ± 0.01, and zeta potential (ZP) of -27.40 ± 0.25 mV. The morphological results confirmed a spongy, porous structure. Fourier Transform Infrared Spectroscopy ensured the drug encapsulation. Differential scanning calorimetric studies showed no interaction between the excipients and CLO. The prepared NSs-loaded gel of optimized CLO-NSs was evaluated, the mucoadhesive strength (6065.85 ± 52.03 dyne/cm2) with spermicidal activity of (0 % sperm motility/60 s). The ex-vivo deposition depicted significantly increased vaginal retention of CLO by 2.44-fold compared to Candistan® 2 % vaginal cream (the market product). Finally, the in-vivo study on rats demonstrated thesuperior efficacy of CLO-NSs gel relative to Candestan®, with significantly reduced inflammatory biomarkers and minimal histopathological alterations in the treatment of vaginal candidiasis with a high safety profile.
Collapse
Affiliation(s)
- Doaa A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Amr Osama
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
4
|
El Sisi AM, Eissa EM, Hassan AHE, Bekhet MA, El-Ela FIA, Roh EJ, Kharshoum RM, Ali AA. Nose-to-Brain Delivery of Chitosan-Grafted Leciplexes for Promoting the Bioavailability and Antidepressant Efficacy of Mirtazapine: In Vitro Assessment and Animal Studies. Pharmaceuticals (Basel) 2025; 18:46. [PMID: 39861109 PMCID: PMC11768278 DOI: 10.3390/ph18010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects. Methods: Primarily, MRZ-loaded leciplexes (MRZ-LPXs) were fabricated and tailored employing a central composite design (CCD). Vesicle diameter size (VS), entrapment efficiency (EE %), cumulative MRZ release percentage (CMRZR %), and total quantity penetrating after twenty-four hours (Q24) were the four parameters assessed. Then, the determined optimum formulation was coated with chitosan (CS-MRZ-LPX) and utilized in pharmacodynamics investigations and in vivo biologic distribution studies in Wistar male rats. Results: The customized MRZ-LPX formulation had a diameter size of 186.2 ± 3.5 nm and drug EE of 45.86 ± 0.76%. Also, the tailored MRZ-LPX formulation had a cumulative amount of MRZ released of 76.66 ± 3.06% and the total Q24 permeated was 383.23 ± 13.08 µg/cm2. Intranasal delivery of the tailored CS-MRZ-LPX revealed notably superior pharmacokinetic attributes inside the brain and circulation compared to the orally administered MRZ suspension and the intranasal free drug suspension (p < 0.05); the relative bioavailability was 370.9% and 385.6% for plasma and brain, respectively. Pharmacodynamics' and immunohistopathological evaluations proved that optimum intranasal CS-MRZ-LPX boosted antidepressant activity compared to the oral and free nasal drug administration. Conclusions: CS-MRZ-LPX tailored formulation can potentially be regarded as a prospective nano platform to boost bioavailability and enhance pharmacodynamics efficacy. Ultimately, intranasal CS-MRZ-LPX can be considered a promising avenue for MRZ targeted brain delivery as an antidepressant.
Collapse
Affiliation(s)
- Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| |
Collapse
|
5
|
Nemr AA, Ahmed S, Adel IM. Limonene-enriched ultra-structural cubosomes to augment ocular delivery of a poorly water soluble anti-fungal drug: Fabrication, characterization, statistical optimization, in vivo corneal uptake and histopathological evaluation in rabbits. J Drug Deliv Sci Technol 2024; 98:105886. [DOI: 10.1016/j.jddst.2024.105886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Bagul US, Khot SV, Ashtekar KS, Monde AA, Kolhe OH, Tagalpallewar AA, Kokare CR. Fabrication of acetazolamide loaded leciplex for intraocular delivery: Optimization by 3 2 full factorial design, in vitro, ex vivo and in vivo pharmacodynamics. Int J Pharm 2024; 661:124391. [PMID: 38936444 DOI: 10.1016/j.ijpharm.2024.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The complex structure of the eye poses challenges in delivering drugs effectively, which can be circumvented by employing nanotechnologies. The present study aimed to prepareacetazolamide-loadedleciplex (ACZ - LP) using a simple one-step fabrication approach followed byoptimization employing a 32 Full Factorial Design. The ACZ - LP demonstrated high entrapment efficiency (93.25 ± 2.32 %), average diameter was recorded around 171.03 ± 3.32 with monodisperse size distribution and zeta potential of 41.33 ± 2.10 mV. Invitro release and ex vivo permeation studies of prepared formulation demonstrated an initial burst release in 1 h followed by sustained release pattern as compared to plain acetazolamide solution. Moreover, an ex vivo corneal drug retention (27.05 ± 1.20 %) and in vitro mucoadhesive studies with different concentration of mucin indicated strong electrostatic bonding confirming the mucoadhesive characteristics of the formulation. Additionally, the histopathological studies ensured that the formulation was non-irritant and nontoxic while and HET-CAM ensured substantial tolerability of the formulation. The in vivo pharmacodynamic investigation carried out on a rabbit model demonstrated that treatment with ACZ - LP resulted in a significant and prolonged reduction in intraocular pressure as compared to plain acetazolamide solution, acetazolamide oral tablet, and Brinzox®. In summary, the ACZ - LP is anefficient and versatile drug delivery approach which demonstrates significant potential in controlling glaucoma.
Collapse
Affiliation(s)
- Uddhav S Bagul
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India.
| | - Shubham V Khot
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Kiran S Ashtekar
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Ashish A Monde
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Omkar H Kolhe
- Department of Quality Assurance Techniques, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Amol A Tagalpallewar
- Department of Pharmaceutics, Dr.Vishwanath Karad MIT World Peace University, School of Health Science and Technology, Kothrud, Pune 411038, Maharashtra, India
| | - Chandrakant R Kokare
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
7
|
El-Shahed SA, Hassan DH, El-Nabarawi MA, El-Setouhy DA, Abdellatif MM. Polymeric Mixed Micelle-Loaded Hydrogel for the Ocular Delivery of Fexofenadine for Treating Allergic Conjunctivitis. Polymers (Basel) 2024; 16:2240. [PMID: 39204460 PMCID: PMC11359231 DOI: 10.3390/polym16162240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study was designed to formulate a polymeric mixed micelle (PMM) formulation to sustainably release fexofenadine (FEX) to treat allergic conjunctivitis effectively. A 32 factorial design was employed where the studied factors were PL90G amount (X1) and Pluronic (F127 and P123) mixture ratio (X2), and the dependent variables were entrapment efficacy (EE, Y1, %), particle size (PS, Y2, nm), zeta potential (ZP, Y3, mV), and the percent of drug released after 6 h (Q6h, Y4, %). The optimized formula was blended with a hydrogel base to develop an FEX-PMM hydrogel, where the safety and efficiency of this hydrogel were evaluated using in vivo studies. The EE% of FEX-PMM ranged from 62.15 ± 2.75 to 90.25 ± 1.48%, the PS from 291.35 ± 6.43 to 467.95 ± 3.60 nm, the ZP from -5.41 ± 0.12 to -9.23 ± 0.23 mV, and the Q6h from 50.27 ± 1.11 to 95.38 ± 0.92%. The Draize test results confirmed the safety of the FEX-PMM hydrogel. Furthermore, the FEX-PMM hydrogel showed rapid recovery in animals with induced allergic conjunctivitis compared to the free drug hydrogel. These results assure PMM's capability to deliver FEX to the conjunctival surface in a sustained pattern, consequently achieving better therapeutic outcomes.
Collapse
Affiliation(s)
- Sherouk A. El-Shahed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Menna M. Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| |
Collapse
|
8
|
Eid HM, Turkia TH, Ali AA, Aboud HM. A Novel Chitosan-coated Leciplex Loaded with Ambrisentan as a Possible Pulmonary Nanosystem: Optimization, Characterization, and Pharmacokinetics Assessments. J Pharm Sci 2024; 113:2320-2330. [PMID: 38582282 DOI: 10.1016/j.xphs.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The purpose of this research was to formulate, optimize, and characterize ambrisentan chitosan-coated LeciPlex (AMS-CTS-LPX) to increase the therapeutic effectiveness and bioavailability of ambrisentan. A central composite design (CCD) was implemented to assess the impact of various factors on the production of AMS-CTS-LPX and to identify the optimum formulation via the use of Design Expert® software. The assembly of AMS-CTS-LPX was conducted using a single-step process. Subsequently, the optimal formulation was chosen and subjected to further assessments. Further, a comparative pharmacokinetic study was carried out using a rat model. The optimized formulation exhibited an entrapment efficiency of 82.39%, with a diameter of 137.53 nm and a surface charge of +43.65 mV. Additionally, it had a sustained cumulative release of 90.41% after 8 h and showed good stability. The safety of AMS-CTS-LPX administered intratracheally was confirmed by in vivo histopathological studies. The pharmacokinetic investigations revealed a 5.6-fold increase in the bioavailability of AMS from the optimal AMS-CTS-LPX formulation compared to the oral AMS solution. Collectively, the results of the current study suggest that CTS-LPX may be beneficial as a pulmonary nanosystem for the administration of AMS.
Collapse
Affiliation(s)
- Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Toqa H Turkia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
9
|
Eltabeeb MA, Abdellatif MM, El-Nabarawi MA, Teaima MH, A Hamed MI, Darwish KM, Hassan M, Hamdan AME, Hamed RR. Chitosan decorated oleosomes loaded propranolol hydrochloride hydrogel repurposed for Candida albicans-vaginal infection. Nanomedicine (Lond) 2024; 19:1369-1388. [PMID: 38900630 PMCID: PMC11318686 DOI: 10.1080/17435889.2024.2359364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024] Open
Abstract
Aim: Our investigation aims to estimate the antifungal effect of propranolol hydrochloride (PNL). Methods: Oleosomes (OLs) were fabricated by thin-film hydration and evaluated for entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and amount of drug released after 6 h Q6h (%). Results: The optimal OL showed a rounded shape with optimum characteristics. The ex-vivo permeation and confocal laser scanning microscopy verified the prolonged release and well deposition of PNL-loaded OLs-gel. The in-silico assessment demonstrated the good stability of PNL with OLs' ingredients. In vivo evaluations for PNL-loaded OLs-gel showed a good antifungal impact against Candida albicans with good safety. Conclusion: This work highlights the potential of PNL-loaded OLs-gel as a potential treatment for candida vaginal infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohammed I A Hamed
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
| | - Ahmed ME Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 74191, Saudi Arabia
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| |
Collapse
|
10
|
Bagul US, Nazirkar MV, Mane AK, Khot SV, Tagalpallewar AA, Kokare CR. Fabrication of architectonic nanosponges for intraocular delivery of Brinzolamide: An insight into QbD driven optimization, in vitro characterization, and pharmacodynamics. Int J Pharm 2024; 650:123746. [PMID: 38145779 DOI: 10.1016/j.ijpharm.2023.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
The intricate structure of the eye poses difficulties in drug targeting, which can be surmounted with the help of nanoformulation strategies. With this view, brinzolamide nanosponges (BNS) were prepared using the emulsion solvent evaporation technique and optimized via Box-Behnken statistical design. The optimized BNS were further incorporated into a poloxamer 407 in situ gel (BNS-ISG) and evaluated. The optimized BNS showed spherical morphology, entrapment efficiency of 83.12 ± 1.2 % with particle size of 114 ± 2.32 nm and PDI of 0.11 ± 0.01. The optimized BNS-ISG exhibited a pseudoplastic behavior and depicted a gelling temperature and gelation time of 35 ± 0.5 °C and 10 ± 2 s respectively. In-vitro release and ex- vivo permeation studies of BNS-ISG demonstrated a sustained release pattern as compared to Brinzox®. Additionally, the HET-CAM and in vitro cytotoxicity studies (using SIRC cell line) ensured that the formulation was non-irritant and nontoxic for ophthalmic delivery. The in vivo pharmacodynamic study using rabbit model depicted that BNS-ISG treatment significantly lowers the intra ocular pressure for prolonged period of time when compared with Brinzox®. In conclusion, the BNS-ISG is an efficient and scalable drug delivery system with significant potential as the targeted therapy of posterior segment eye diseases.
Collapse
Affiliation(s)
- Uddhav S Bagul
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India.
| | - Mayuri V Nazirkar
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Ajay K Mane
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Shubham V Khot
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| | - Amol A Tagalpallewar
- Department of Pharmaceutics, Dr. Vishwanath Karad MIT World Peace University, School of Health Science and Technology, Kothrud, Pune 411038, Maharashtra, India
| | - Chandrakant R Kokare
- Department of Pharmaceutics, STES Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule University Pune), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
11
|
Shoman NA, Gebreel RM, El-Nabarawi MA, Attia A. Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation. Drug Deliv 2023; 30:2162162. [PMID: 36587627 PMCID: PMC9943252 DOI: 10.1080/10717544.2022.2162162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To design and evaluate hyaluronan-based cubosomes loaded with bromfenac sodium (BS) for ocular application to enhance the corneal permeation and retention in pterygium and cataract treatment. BS-loaded cubosomes were prepared by the emulsification method, employing 23 full factorial design using Design-Expert® software. Glycerol monoolein (GMO) and poloxamer 407 (P407) as lipid phase and polyvinyl alcohol (PVA) as stabilizer were the used ingredients. The optimized formulation (OBC; containing GMO (7% w/w), P407 (0.7% w/w) and PVA (2.5% w/w)) was further evaluated. OBC had an entrapment efficiency of 61.66 ± 1.01%, a zeta potential of -30.80 ± 0.61 mV, a mean particle size of 149.30 ± 15.24 nm and a polydispersity index of 0.21 ± 0.02. Transmission electron microscopy confirmed its cubic shape and excellent dispersibility. OBC exhibited high stability and no ocular irritation that was ensured by histopathology. Ex vivo permeation study showed a significant increase in drug deposition and permeability parameters through goat cornea, besides, confocal laser microscopy established the superior permeation capability of OBC, as compared to drug solution. In vivo pharmacokinetics in aqueous humor indicated higher AUC0-tlast (18.88 µg.h/mL) and mean residence time (3.16 h) of OBC when compared to the marketed eye drops (7.93 µg.h/mL and 1.97 h, respectively). Accordingly, hyaluronan-enriched cubosomes can be regarded as a promising carrier for safe and effective topical ocular delivery.
Collapse
Affiliation(s)
- Nabil A. Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rana M. Gebreel
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alshaimaa Attia
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt,CONTACT Alshaimaa Attia Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
12
|
Nemr AA, El-Mahrouk GM, Badie HA. Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation , in vitro characterisation, histopathological study, and in vivo assessment. J Microencapsul 2023; 40:423-441. [PMID: 37192318 DOI: 10.1080/02652048.2023.2215326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
AIM The aim of this manuscript was to fabricate agomelatine (AGM) loaded elastosomes to improve its corneal permeation and ocular bioavailability. AGM is a biopharmaceutical classification system (BCS) class II with low water solubility and high membrane permeability. It has a potent agonistic action on melatonin receptors, so it is used for glaucoma treatment. METHODS Elastosomes were made using modified ethanol injection technique according to a 22 × 41 full factorial design. The chosen factors were: edge activators (EAs) type, surfactant percent (SAA %w/w), and cholesterol:surfactant ratio (CH:SAA ratio). The studied responses were encapsulation efficiency percent (EE%), mean diameter, polydispersity index (PDI), zeta potential (ZP), percentage of drug released after two hours (Q2h%), and 24 hours (Q24h%). RESULTS The optimum formula with the desirability of 0.752 was composed of Brij98 as EA type, 15%w/w SAA%, and 1:1 CH:SAA ratio. It revealed EE% of 73.22%w/v and mean diameter, PDI, ZP, Q2h%, and Q24h% values of 484.25 nm, 0.31, -30.75 mV, 32.7%w/v, and 75.6%w/v, respectively. It demonstrated acceptable stability for three months and superior elasticity than its conventional liposome. The histopathological study ensured the tolerability of its ophthalmic application. Also, it was proven to be safe from the results of the pH and refractive index tests. The in vivo pharmacodynamic parameters of the optimum formula revealed dominance in a maximum % decrease in intraocular pressure (IOP), the area under the IOP response curve, and mean residence time with the value of 82.73%w/v, 820.69%h, and 13.98 h compared to that of the AGM solution (35.92%w/v, 181.30%h, and 7.52 h). CONCLUSIONS Elastosomes can be a promising option to improve AGM ocular bioavailability.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Abd-Elmonem EM, Makky AM, Antar A, Abd-Elsalam WH, Khalil IA. Corneal targeted Amorolfine HCl-mixed micelles for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. J Drug Deliv Sci Technol 2023; 85:104614. [DOI: 10.1016/j.jddst.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
El-Dahmy RM, Elsayed I, Hussein J, Althubiti M, Almaimani RA, El-Readi MZ, Elbaset MA, Ibrahim BMM. Development of Transdermal Oleogel Containing Olmesartan Medoxomil: Statistical Optimization and Pharmacological Evaluation. Pharmaceutics 2023; 15:1083. [PMID: 37111569 PMCID: PMC10146305 DOI: 10.3390/pharmaceutics15041083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Olmesartan medoxomil (OLM) is a first-line antihypertensive drug with low oral bioavailability (28.6%). This study aimed to develop oleogel formulations to decrease OLM side effects and boost its therapeutic efficacy and bioavailability. OLM oleogel formulations were composed of Tween 20, Aerosil 200, and lavender oil. A central composite response surface design chose the optimized formulation, containing Oil/Surfactant (SAA) ratio of 1:1 and Aerosil % of 10.55%, after showing the lowest firmness and compressibility, and the highest viscosity, adhesiveness, and bioadhesive properties (Fmax and Wad). The optimized oleogel increased OLM release by 4.21 and 4.97 folds than the drug suspension and gel, respectively. The optimized oleogel formulation increased OLM permeation by 5.62 and 7.23 folds than the drug suspension and gel, respectively. The pharmacodynamic study revealed the superiority of the optimized formulation in maintaining normal blood pressure and heart rate for 24 h. The biochemical analysis revealed that the optimized oleogel achieved the best serum electrolyte balance profile, preventing OLM-induced tachycardia. The pharmacokinetic study showed that the optimized oleogel increased OLM's bioavailability by more than 4.5- and 2.5-folds compared to the standard gel and the oral market tablet, respectively. These results confirmed the success of oleogel formulations in the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 04184, United Arab Emirates
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Bassant M. M. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|