1
|
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, Krasnov VP. Magnetic Nanocomposite Materials Based on Fe 3O 4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int J Mol Sci 2023; 24:12178. [PMID: 37569552 PMCID: PMC10419229 DOI: 10.3390/ijms241512178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.
Collapse
Affiliation(s)
- Tat’yana G. Khonina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Denis S. Tishin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander Yu. Germov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Alexander V. Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Maxim S. Karabanalov
- Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Alexey A. Mysik
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Ekaterina A. Bogdanova
- Institute of Solid State Chemistry, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia;
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| |
Collapse
|
2
|
Turrina C, Schoenen M, Milani D, Klassen A, Rojas Gonzaléz DM, Cvirn G, Mela P, Berensmeier S, Slabu I, Schwaminger SP. Application of magnetic iron oxide nanoparticles: Thrombotic activity, imaging and cytocompatibility of silica-coated and carboxymethyl dextrane-coated particles. Colloids Surf B Biointerfaces 2023; 228:113428. [PMID: 37379701 DOI: 10.1016/j.colsurfb.2023.113428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Max Schoenen
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Davide Milani
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna Klassen
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Diana M Rojas Gonzaléz
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Petra Mela
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Sebastian P Schwaminger
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
3
|
Spoială A, Ilie CI, Motelica L, Ficai D, Semenescu A, Oprea OC, Ficai A. Smart Magnetic Drug Delivery Systems for the Treatment of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050876. [PMID: 36903753 PMCID: PMC10004758 DOI: 10.3390/nano13050876] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/01/2023]
Abstract
Cancer remains the most devastating disease, being one of the main factors of death and morbidity worldwide since ancient times. Although early diagnosis and treatment represent the correct approach in the fight against cancer, traditional therapies, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have some limitations (lack of specificity, cytotoxicity, and multidrug resistance). These limitations represent a continuous challenge for determining optimal therapies for the diagnosis and treatment of cancer. Cancer diagnosis and treatment have seen significant achievements with the advent of nanotechnology and a wide range of nanoparticles. Due to their special advantages, such as low toxicity, high stability, good permeability, biocompatibility, improved retention effect, and precise targeting, nanoparticles with sizes ranging from 1 nm to 100 nm have been successfully used in cancer diagnosis and treatment by solving the limitations of conventional cancer treatment, but also overcoming multidrug resistance. Additionally, choosing the best cancer diagnosis, treatment, and management is extremely important. The use of nanotechnology and magnetic nanoparticles (MNPs) represents an effective alternative in the simultaneous diagnosis and treatment of cancer using nano-theranostic particles that facilitate early-stage detection and selective destruction of cancer cells. The specific properties, such as the control of the dimensions and the specific surface through the judicious choice of synthesis methods, and the possibility of targeting the target organ by applying an internal magnetic field, make these nanoparticles effective alternatives for the diagnosis and treatment of cancer. This review discusses the use of MNPs in cancer diagnosis and treatment and provides future perspectives in the field.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Augustin Semenescu
- Departament of Engineering and Management for Transports, Faculty of Transports, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| |
Collapse
|
4
|
Khabibullin VR, Chetyrkina MR, Obydennyy SI, Maksimov SV, Stepanov GV, Shtykov SN. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int J Mol Sci 2023; 24:4480. [PMID: 36901910 PMCID: PMC10002596 DOI: 10.3390/ijms24054480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.
Collapse
Affiliation(s)
- Vladislav R. Khabibullin
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | | | - Sergei I. Obydennyy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia
| | - Sergey V. Maksimov
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Gennady V. Stepanov
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | - Sergei N. Shtykov
- Department of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
5
|
Hudiță A, Grumezescu V, Gherasim O, Grumezescu AM, Dorcioman G, Negut I, Oprea OC, Vasile BȘ, Gălățeanu B, Curuțiu C, Holban AM. MAPLE Processed Nanostructures for Antimicrobial Coatings. Int J Mol Sci 2022; 23:ijms232315355. [PMID: 36499682 PMCID: PMC9738358 DOI: 10.3390/ijms232315355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Despite their great benefits for debilitated patients, indwelling devices are prone to become easily colonized by resident and opportunistic microorganisms, which have the ability to attach to their surfaces and form highly specialized communities called biofilms. These are extremely resistant to host defense mechanisms and antibiotics, leading to treatment failure and device replacement, but also to life-threatening complications. In this study, we aimed to optimize a silica (SiO2)-coated magnetite (Fe3O4)-based nanosystem containing the natural antimicrobial agent, eugenol (E), suitable for MAPLE (matrix-assisted pulsed laser evaporation) deposition as a bioactive coating for biomedical applications. X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and transmission electron microscopy investigations were employed to characterize the obtained nanosystems. The in vitro tests evidenced the superior biocompatibility of such nanostructured coatings, as revealed by their non-cytotoxic activity and ability to promote cellular proliferation and sustain normal cellular development of dermal fibroblasts. Moreover, the obtained nanocoatings did not induce proinflammatory events in human blood samples. Our studies demonstrated that Fe3O4 NPs can improve the antimicrobial activity of E, while the use of a SiO2 matrix may increase its efficiency over prolonged periods of time. The Fe3O4@SiO2 nanosystems showed excellent biocompatibility, sustaining human dermal fibroblasts' viability, proliferation, and typical architecture. More, the novel coatings lack proinflammatory potential as revealed by the absence of proinflammatory cytokine expression in response to human blood sample interactions.
Collapse
Affiliation(s)
- Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
- Correspondence:
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| |
Collapse
|