1
|
Khursheed S, Sarwar S, Hussain D, Shah MR, Barek J, Malik MI. Electrochemical detection of creatinine at picomolar scale with an extended linear dynamic range in human body fluids for diagnosis of kidney dysfunction. Anal Chim Acta 2025; 1353:343978. [PMID: 40221212 DOI: 10.1016/j.aca.2025.343978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Creatinine levels in different body fluids can serve as an important biomarker for kidney functioning relevant to prostate cancer and chronic kidney disease (CKD). Creatinine levels vary in concentration in different body fluids, such as blood, urine, and saliva. Unlike previously reported sensors, the developed creatinine sensor can be employed for all levels of creatinine in samples of real patients. RESULTS In this study, an efficient voltammetric sensor for creatinine is developed by modifying a glassy carbon electrode (GCE) with poly (ethyleneimine) (PEI) capped silver nanoparticles at titanium dioxide (PEI-AgNPs)/TiO2, i.e., titanium dioxide (TiO2)/graphene oxide (GO) nanocomposites (Ag@GO/TiO2-GCE). The Ag@GO/TiO2 nanocomposite was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, and UV-Vis spectrophotometry. Various voltammetric techniques namely cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) were employed. The Ag@GO/TiO2-GCE demonstrated good selectivity, stability, and a quick response time of 1.0 s for creatinine. An extended linear dynamic range (LDR) of creatinine from 0.01 pM (DPV) to 1.0 M (CV) based on different voltammetric techniques is imperative for detecting diverse creatinine levels in various body fluids. The LOD and LOQ of the developed creatinine detection method were found to be 1.15 pM and 3.5 pM, respectively. The electrochemical sensor exhibited an exceptionally high sensitivity of 15.74 μApM-1cm-2.The body fluids from healthy volunteers were spiked with a known amount of creatinine to evaluate sensor efficiency in the context of recovery. Finally, blood serum, saliva, and urine samples of kidney patients were analyzed for creatinine levels. SIGNIFICANCE An important merit of the developed creatinine sensor is its ability for non-invasive point-of-care diagnosis in saliva with more than 90 % recovery. The comparison of the developed method with the standard Jaffes' colorimetric method endorsed its reliability and extended ability for the samples where Jaffes' method fails. The low LOD, high sensitivity, extended LDR, and low-cost render the possibility of adopting this method for point-of-care diagnosis.
Collapse
Affiliation(s)
- Sanya Khursheed
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Sumera Sarwar
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Prague, Czech Republic
| | - Muhammad Imran Malik
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Kocur A, Pawiński T. Microsampling techniques and patient-centric therapeutic drug monitoring of immunosuppressants. Bioanalysis 2025; 17:413-427. [PMID: 40153274 PMCID: PMC11959920 DOI: 10.1080/17576180.2025.2477976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 03/30/2025] Open
Abstract
Immunosuppressive pharmacotherapy after solid organ transplantation (SOT) requires therapeutic drug monitoring (TDM) for therapy individualization. The venous whole blood is still considered as routine matrix for monitoring immunosuppressive drug concentration. On the other hand, as an alternative, capillary blood collected using noninvasive sampling is convergent with a patient-centric approach. Despite their disadvantages regarding sample homogeneity and the hematocrit effect, well-known dried blood spot techniques have shown promising results. Volumetric absorptive microsampling (VAMS) and quantitative dried blood spot (qDBS) have successfully eliminated these unfavorable biased elements. Microsampling can be used in transplant recipients' care, mainly due to long-term therapy under control drug concentrations and the long distance between the place of the patient's residence and the diagnostic laboratory in the transplant center. The study aimed to discuss the clinical consequences of implementing microsampling techniques for TDM of immunosuppressants. Additionally, we have discussed the 'hot topics' in microsampling: home-based self-sampling, adherence to therapy monitoring, and drug concentration conversion to estimated traditional matrices. Finally, based on our experience and current practice, we propose best practices for microsampling implementation from bench to bedside. Microsampling techniques can potentially revolutionise immunosuppressive pharmacotherapy by enabling patient-centric individualisation in various subpopulations, significantly improving post-transplant care.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Vethe NT, Åsberg A, Bergan S, Robertsen I, Midtvedt K. Implementation of Volumetric Finger-Prick Self-Sampling for Therapeutic Drug Monitoring of Immunosuppressants After Kidney Transplantation: Lessons Learned From the Practice. Ther Drug Monit 2025; 47:98-104. [PMID: 39560611 DOI: 10.1097/ftd.0000000000001281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Home-based hospital services are becoming increasingly popular, and the addition of remote outpatient appointments after kidney transplantation facilitates more practical and closer follow-up. In this context, finger-prick self-sampling is an important aspect of monitoring of immunosuppressants and biomarkers. Nevertheless, several issues must be addressed to ensure the feasibility and quality when implementing microsampling in clinical practice. We summarize our experiences and opinions in this field. METHODS This article is based on the authors' experience regarding the laboratory and clinical implementation of finger-prick self-sampling in kidney transplant recipients. The referenced literature is related to the authors' knowledge in this field. RESULTS We present considerations for the selection of relevant analytes, key characteristics of selected volumetric sampling tools (Mitra and Capitainer), and the associated sampling pitfalls. In addition, we address the requirements for patients performing finger-prick sampling, appropriate design of methods and workflow, critical points for validation, and aspects related to logistics and digital solutions. CONCLUSIONS Volumetric finger-prick self-sampling is suitable for monitoring immunosuppressants and certain biomarkers that are relevant to outpatient follow-up after kidney transplantation. We believe that a carefully designed system for the entire workflow, including patient training, will be beneficial in enabling a safe experience for transplant recipients, as well as ensuring overall efficiency and adequate quality. In the future, a combination of immunosuppressants with a wide range of biomarkers has significant potential for use in at-home self-sampling after kidney transplantation.
Collapse
Affiliation(s)
- Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Leino AD, Takyi-Williams J, Park JM, Norman SP, Sun D, Farris KB, Pai MP. Clinical validation of two volumetric absorptive microsampling devices to support home-based therapeutic drug monitoring of immunosuppression. Br J Clin Pharmacol 2024; 90:2897-2909. [PMID: 39051148 DOI: 10.1111/bcp.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS Dried blood volumetric absorptive microsamples (VAMS) may facilitate home-based sampling to enhance therapeutic drug monitoring after transplantation. This study aimed to clinically validate a liquid chromatography-tandem mass spectrometry assay using 2 VAMS devices with different sampling locations (Tasso-M20 for the upper arm and Mitra for the finger). Patient preferences were also evaluated. METHODS Clinical validation was performed for tacrolimus and mycophenolic acid by comparison of paired VAMS and venipuncture samples using Passing-Bablok regression and Bland-Altman analysis. Conversion of mycophenolic acid VAMS to serum concentrations was evaluated using haematocrit-dependent formulas and fixed correction factors defined a priori. Patients' perspectives, including useability, acceptability and feasibility, were also investigated using established questionnaires. RESULTS Paired samples (n = 50) were collected from 25 kidney transplant recipients. Differences for tacrolimus whole-blood concentration were within ±20% for 86 and 88% of samples from the upper arm and fingerstick, respectively. Using correction factors of 1.3 for the upper-arm and 1.47 for finger-prick samples, 84 and 76% of the paired samples, respectively, were within ±20% for mycophenolic acid serum concentration. Patient experience surveys demonstrated limited pain and acceptable useability of the upper-arm device. CONCLUSIONS Tacrolimus and mycophenolic acid can be measured using 2 common VAMS devices with similar analytical performance. Patients are supportive of home-based monitoring with a preference for the Tasso-M20 device.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - John Takyi-Williams
- Pharmacokinetic & Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Silas P Norman
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Pharmacokinetic & Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Karen B Farris
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Pharmacokinetic & Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
6
|
Cancellerini C, Belotti LMB, Mohamed S, Solda' M, Esposito E, Bisulli F, Mostacci B, Vignatelli L, Tinuper P, Contin M, Licchetta L. Fingerprick volumetric absorptive microsampling for therapeutic drug monitoring of antiseizure medications: Reliability and real-life feasibility in epilepsy patients. J Pharm Biomed Anal 2024; 242:116065. [PMID: 38401349 DOI: 10.1016/j.jpba.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Volumetric absorptive microsampling (VAMS) is increasingly proposed as a clinically reliable therapeutic drug monitoring (TDM) sampling methodology. The study aimed to establish the reliability and real-life feasibility of patient self-collected capillary VAMS for TDM of antiseizure medication (ASMs), using plasma ASMs concentrations from venous blood as a reference standard. Nurses collected venous and capillary blood samples using VAMS. Afterward, persons with epilepsy (PWE) performed VAMS sampling by themselves. All samples were analyzed by UHPLC-MS/MS. We performed a cross-validation study, comparing ASMs concentrations obtained by VAMS nurses and patients' self-collected versus plasma through Bland-Altman analysis and Passing-Bablok regression. We enrolled 301 PWE (M: F 42.5%:57.5%; mean age 44±16 years), treated with 13 ASMs, providing a total of 464 measurements. Statistical analysis comparing VAMS self-collected versus plasma ASMs concentrations showed a bias close to zero and slope and intercept values indicating a good agreement for CBZ, LCS, LEV, LTG, OXC, PB, and PHT, while a systematic difference between the two methods was found for VPA, PMP, TPM and ZNS. This is the first study showing the reliability and feasibility of the real-world application of PWE self-collected VAMS for most of the ASMs considered, giving a promising basis for at-home VAMS applications.
Collapse
Affiliation(s)
- Chiara Cancellerini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Laura Maria Beatrice Belotti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Susan Mohamed
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Martina Solda'
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Erika Esposito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Contin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the European Reference Network EpiCARE, Bologna, Italy
| |
Collapse
|
7
|
Tolou-Ghamari Z. Tacrolimus and Cyclosporin Pharmacotherapy, Detection Methods, Cytochrome P450 Enzymes after Heart Transplantation. Cardiovasc Hematol Agents Med Chem 2024; 22:106-113. [PMID: 37496131 DOI: 10.2174/1871525721666230726150021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Advances in organ transplantation were made after the discovery of the pure form of cyclosporine by Dr Jean Borel in the 1970s. In fact, in clinical practice achieving a delicate balance in circulating immunosuppressive necessitate focus on the difficult task of posttransplant therapeutic drug monitoring. OBJECTIVE The purpose of this study was to determine the pharmacologic properties of cyclosporine- tacrolimus, detection methods, and the effects on the activity of cytochrome P450 enzymes when prescribing the most efficient treatments in forms of polypharmacy for the recipients of heart transplantation. METHODS Scientific literature on the interactions of tacrolimus and cyclosporine with human cytochrome P450 enzymes was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus. RESULTS Prescription immunosuppressive drugs based on polypharmacy accompanied by induction agents could result in hidden neurotoxicity and nephrotoxicity. A literature search shows that cyclosporine prescription with antihypertensives drugs needs close monitoring. Co-administration of tacrolimus and diltiazem or verapamil needs a decrease in the tacrolimus dose by 20-50%. Vigilant attention to the lowest possible statin dose is needed when coadministered with fluvastatin or pravastatin. Polypharmacy based on ticlopidine, clopidogrel, and cyclosporine or tacrolimus needs monitoring of immunosuppressive drug levels for several months. A prescription with clotrimazole or fluconazole needs close monitoring, and itraconazole or ketoconazole needs to reduce the initial dose by 50%. Combination with nefazodone needs to be avoided, and alternative drugs such as sertraline or citalopram could be prescribed in addition to further monitoring consideration. In prescription with phenytoin, the bound and free phenytoin levels need close monitoring. CONCLUSION Polypharmacy based on tacrolimus or cyclosporine needs vigilant therapeutic drug monitoring due to the cytochrome P450 enzymes associated with biochemical variables in metabolic pathways. Further attention to polypharmacy should be given to circulate drugs that could hide pharmacokinetics interactions associated with infections, malignancies, chronic kidney disease, and rejection after organ transplantation.
Collapse
Affiliation(s)
- Zahra Tolou-Ghamari
- Deputy of Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
de Sá e Silva DM, Thaitumu M, Theodoridis G, Witting M, Gika H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023; 13:1038. [PMID: 37887363 PMCID: PMC10609074 DOI: 10.3390/metabo13101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) has arisen as a relevant tool in biological analysis, offering simplified sampling procedures and enhanced stability. Most of the attention VAMS has received in the past decade has been from pharmaceutical research, with most of the published work employing VAMS targeting drugs or other exogenous compounds, such as toxins and pollutants. However, biomarker analysis by employing blood microsampling has high promise. Herein, a comprehensive review on the applicability of VAMS devices for the analysis of endogenous metabolites/biomarkers was performed. The study presents a full overview of the analysis process, incorporating all the steps in sample treatment and validation parameters. Overall, VAMS devices have proven to be reliable tools for the analysis of endogenous analytes with biological importance, often offering improved analyte stability in comparison with blood under ambient conditions as well as a convenient and straightforward sample acquisition model.
Collapse
Affiliation(s)
- Daniel Marques de Sá e Silva
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Marlene Thaitumu
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 6, 85354 Freising, Germany
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Golsanamlu Z, Soleymani J, Gharekhani A, Jouyban A. In-situ preparation of norepinephrine-functionalized silver nanoparticles and application for colorimetric detection of tacrolimus in plasma samples. Heliyon 2023; 9:e18404. [PMID: 37576308 PMCID: PMC10412875 DOI: 10.1016/j.heliyon.2023.e18404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Tacrolimus (Tac) is a well-documented immunosuppressive agent for the prevention of graft-vs-host diseases in several types of organ transplants. The narrow therapeutic window and the individual-variable pharmacokinetics of Tac demonstrate the importance of regular therapeutic drug monitoring (TDM) as an imperative concept for its oral medication regimens. A simple, one-step, selective, and sensitive colorimetric platform is fabricated for the determination of Tac by surface modification of the silver nanoparticles (AgNPs) via norepinephrine (NE) molecules. The attachment of NE and Tac induces the aggregation of the AgNPs, which is observed by color distinction (yellow to brown) and a noteworthy shifting of the absorption peak in the visible region. The fabricated nanoprobe can detect Tac concentrations in plasma samples in two linear ranges from 2 ng/mL to 70 ng/mL and 70 ng/mL to 1000 ng/mL with R2 > 0.99. The limit of detection (LOD) was calculated as low as 0.1 ng/mL. The developed method was applied for the determination of Tac in patient's plasma samples under Tac medication therapy.
Collapse
Affiliation(s)
- Zahra Golsanamlu
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kocur A, Rubik J, Czarnowski P, Czajkowska A, Marszałek D, Sierakowski M, Górska M, Pawiński T. Therapeutic drug monitoring of mycophenolic acid (MPA) using volumetric absorptive microsampling (VAMS) in pediatric renal transplant recipients: ultra-high-performance liquid chromatography-tandem mass spectrometry analytical method development, cross-validation, and clinical application. Pharmacol Rep 2023:10.1007/s43440-023-00509-w. [PMID: 37452967 PMCID: PMC10374821 DOI: 10.1007/s43440-023-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is widely used in posttransplant pharmacotherapy for pediatric patients after renal transplantation. Volumetric absorptive microsampling (VAMS) is a recent approach for sample collection, particularly during therapeutic drug monitoring (TDM). The recommended matrix for MPA determination is plasma (PL), and conversion between capillary-blood VAMS samples and PL concentrations is required for the appropriate interpretation of the results. METHODS This study aimed to validate and develop a UHPLC-MS/MS method for MPA quantification in whole blood (WB), PL, and VAMS samples, with cross and clinical validation based on regression calculations. Methods were validated in the 0.10-15 µg/mL range for trough MPA concentration measurement according to the European Medicines Agency (EMA) guidelines. Fifty pediatric patients treated with MPA after renal transplantation were included in this study. PL and WB samples were obtained via venipuncture, whereas VAMS samples were collected after the fingerstick. The conversion from VAMSMPA to PLMPA concentration was performed using formulas based on hematocrit values and a regression model. RESULTS LC-MS/MS methods were successfully developed and validated according to EMA guidelines. The cross-correlation between the methods was evaluated using Passing-Bablok regression, Bland-Altman bias plots, and predictive performance calculations. Clinical validation of the developed method was successfully performed, and the formula based on regression was successfully validated for VAMSMPA to PLMPA concentration and confirmed on an independent group of samples. CONCLUSIONS This study is the first development of a triple matrix-based LC-MS/MS method for MPA determination in the pediatric population after renal transplantation. For the first time, the developed methods were cross-validated with routinely used HPLC-DAD protocol.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland.
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation, and Arterial Hypertension, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Agnieszka Czajkowska
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Dorota Marszałek
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland
| | - Maciej Sierakowski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University, 1/3 Kazimierza Wóycickiego St, 01-938, Warsaw, Poland
| | - Marta Górska
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland
| |
Collapse
|