1
|
Wang M, Guo W, Ke Z, Mao H, Lv J, Qi L, Wang J. Inhibitory mechanisms of galloylated forms of theaflavins on α-glucosidase. Int J Biol Macromol 2025; 294:139324. [PMID: 39755321 DOI: 10.1016/j.ijbiomac.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC50 values ranging from TFDG (0.26 mg/mL) < TF3'G (0.33 mg/mL) < TF3G (0.39 mg/mL) ≪ TF (3.26 mg/mL). The multi-spectroscopic analyses revealed that theaflavin monomers changed the microenvironment around aromatic amino acid residues and conformation of α-glucosidase, with the hierarchy being TFDG > TF3'G > TF3G > TF. The binding of theaflavins with α-glucosidase was confirmed by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulations analysis. It was confirmed that theaflavins can form stable complexes with α-glucosidase, and that hydrogen bonding and van der Waals forces play important roles in the binding of theaflavins to α-glucosidase. The strongest binding affinity was observed between TFDG and the enzyme's active site, which corresponded with its enzyme activity inhibition ability. The study suggests that GM substitution plays a crucial role in enhancing the binding of theaflavins to α-glucosidase, thereby inducing greater conformational changes and leading to a stronger inhibitory effect on α-glucosidase.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Wenwen Guo
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jimin Lv
- Xianghu Laboratory, Hangzhou 311231, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
2
|
Saleem B, Islam M, Ahmed A, Saeed H, Imtiaz F, Muzaffar S. Bioassay-guided isolation and in silico study of antihyperlipidemic compounds from Onosma hispidum Wall. J Biomol Struct Dyn 2024; 42:8009-8023. [PMID: 37548653 DOI: 10.1080/07391102.2023.2242503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Isolation of bioactive compounds from plants and their therapeutic evaluation is crucial in the pursuit of novel phytochemicals and contributes an indispensable role in drug discovery and design. The literature has documented the hypolipidemic effect of numerous Onosma species. Taking that into consideration, the current study was designed to isolate, purify and evaluate the antihyperlipidemic potential of leaves of Onosma hispidum Wall. For the first time, the bioassay-guided isolation led to the separation of 3 compounds that were identified by spectroscopic techniques as o-phthalic acid bis-(2-ethyl decyl)-ester (1), bis (2-ethyloctyl) phthalate (2), and 1,2 benzenedicarboxylic acid bis(2-methyl heptyl) ester (3). Lipase inhibition assay was utilized to scrutinize the antihyperlipidemic potential of methanolic extract fractions and subsequently isolated compounds. Further, the isolated compounds were employed for in silico studies via molecular docking, molecular mechanics with generalized born and surface area solvation (MM-GBSA), and MD simulations with Pancreatic Lipase Colipase (PDB ID: 1LPB). Molecular docking and MM-GBSA of isolated compounds were employed to explain the mode of binding between the protein-ligand complex and binding free energy calculation, respectively. Since compound (3) displayed the best docking score of -6.689 kcal/mol as compared to orlistat -5.529 kcal/mol with PDB: 1LPB. So, it was chosen for MD simulations to evaluate ligand stability and flexibility of the complex which was validated by the fluctuation of α-carbon chain, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and type of interactions involved which authenticated the in vitro lipase inhibitory potential. Overall, in silico and in vitro results validated that compound (3) could be exploited as a promising pancreatic lipase inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bushra Saleem
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Phamarcognosy, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Sana Muzaffar
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Fayyaz S, Islam M, Ahmed A, Saeed H. Evaluation of Anti-Hyperlipidemic Activity of the Seeds Extracts of Ficus carica: In Vitro and In Silico Approaches. Cell Biochem Funct 2024; 42:e4124. [PMID: 39275928 DOI: 10.1002/cbf.4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
Obesity and hyperlipidemia have become major disorders predominantly causing prevailing cardiovascular diseases and ultimately death. The prolonged use of anti-obesity drugs and statins for reducing obesity and blood lipid levels is leading toward adverse effects of kidneys and muscles, specifically rhabdomyolysis. The objective of this study is to evaluate potential of seeds of Ficus carica against hyperlipidemia. Various extracts and isolated compounds from fig seeds were analyzed and evaluated for their anti-hyperlipidemic potential. Methanol extract and its ethyl acetate fraction showed maximum pancreatic lipase inhibition of 61.93% and 86.45% in comparison to reference drug Orlistat. Four compounds isolated by HPLC-PDA technique were determined as Gallic acid, Catechin, Epicatechin, and Quercetin also showed strong potential to inhibit enzyme pancreatic lipase comparable to Orlistat. These isolated compounds were further analyzed for molecular docking and MM-GBSA studies. Three ligands, namely Quercetin, Epicatechin, and Catechin were found more effective against pancreatic lipase as these possessed docking scores (-9.881, -9.741, -9.410) higher to that of the reference ligand Orlistat (-5.273). The binding free energies of these compounds were -55.03, -56.54, and 60.35 kcal/mol, respectively. The results have shown that Quercetin has the highest binding affinity correlating with the highest inhibition of pancreatic lipase enzyme 1LPB. Hence, it is suggested that seeds of F. carica have promising anti-hyperlipidemic potential and foremost in reducing obesity.
Collapse
Affiliation(s)
- Saira Fayyaz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Lu F, Sun J, Jiang X, Song J, Yan X, Teng Q, Li D. Identification and Isolation of α-Glucosidase Inhibitors from Siraitia grosvenorii Roots Using Bio-Affinity Ultrafiltration and Comprehensive Chromatography. Int J Mol Sci 2023; 24:10178. [PMID: 37373326 DOI: 10.3390/ijms241210178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of bioactive compounds from medicinal plants has played a crucial role in drug discovery. In this study, a simple and efficient method utilizing affinity-based ultrafiltration (UF) coupled with high-performance liquid chromatography (HPLC) was developed for the rapid screening and targeted separation of α-glucosidase inhibitors from Siraitia grosvenorii roots. First, an active fraction of S. grosvenorii roots (SGR2) was prepared, and 17 potential α-glucosidase inhibitors were identified based on UF-HPLC analysis. Second, guided by UF-HPLC, a combination of MCI gel CHP-20P column chromatography, high-speed counter-current countercurrent chromatography, and preparative HPLC were conducted to isolate the compounds producing active peaks. Sixteen compounds were successfully isolated from SGR2, including two lignans and fourteen cucurbitane-type triterpenoids. The structures of the novel compounds (4, 6, 7, 8, 9, and 11) were elucidated using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. Finally, the α-glucosidase inhibitory activities of the isolated compounds were verified via enzyme inhibition assays and molecular docking analysis, all of which were found to exhibit certain inhibitory activity. Compound 14 exhibited the strongest inhibitory activity, with an IC50 value of 430.13 ± 13.33 μM, which was superior to that of acarbose (1332.50 ± 58.53 μM). The relationships between the structures of the compounds and their inhibitory activities were also investigated. Molecular docking showed that the highly active inhibitors interacted with α-glucosidase through hydrogen bonds and hydrophobic interactions. Our results demonstrate the beneficial effects of S. grosvenorii roots and their constituents on α-glucosidase inhibition.
Collapse
Affiliation(s)
- Fenglai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jiayi Sun
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaohua Jiang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jingru Song
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaojie Yan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Qinghu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| |
Collapse
|
5
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Asghar M, Saleem B, Farooq MA, Khan DH, Peltonen L. Novel phytoniosomes formulation of Tradescantia pallida leaves attenuates diabetes more effectively than pure extract. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 PMCID: PMC11977607 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of PharmacyQU Health, Qatar UniversityDohaQatar
| |
Collapse
|
7
|
Imtiaz F, Islam M, Saeed H, Ahmed A. Phenolic compounds from Tradescantia pallida ameliorate diabetes by inhibiting enzymatic and non-enzymatic pathways. J Biomol Struct Dyn 2023; 41:11872-11888. [PMID: 36597930 DOI: 10.1080/07391102.2022.2164059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic metabolic disorder marked by postprandial hyperglycemia due to several etiologies including abnormal carbohydrate digestion and glycation of hemoglobin. The prolong use of synthetic drugs results in characteristic side effects which necessitates the discovery of safe and cost-effective substitutes. The aim of the current study is to isolate and evaluate the antidiabetic potential of the phenolic compounds from the leaves of Tradescantia pallida. Syringic acid, p-coumaric acid, morin and catechin (compounds 1-4) were isolated and characterized from Tradescantia pallida leaves using column chromatography and spectroscopic techniques. The in vitro antidiabetic potential of the phenolic compounds were assessed using α-amylase and non-enzymatic glycosylation of hemoglobin protein assays. A mechanistic insight of interactions between phenolic compounds and human α-amylase and hemoglobin protein were scrutinized by employing molecular docking method. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were carried out to find the binding energies of the ligand-protein complexes. Morin and catechin were further analyzed to find the dynamic and thermodynamic constraints of the complexes under specific biological conditions using molecular dynamic simulation trajectories. The stability and flexibility of the complexes were justified by fluctuation of α-carbon chain, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and type of interactions involved which authenticated the in vitro inhibitory potential of morin and catechin against enzymatic and non-enzymatic pathways. The current study could be fruitful in rational designing of safe antidiabetic drugs of natural origin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|