1
|
Liang Z, Tang X, Chen L, Liu Y, Zhao S, Ma X, Luo G, Xu B. A Formulation-Process-Product Integrated Design Method for Accelerating Pharmaceutical Tablet Development via the High-Shear Wet Granulation and Tableting Route. Pharmaceutics 2025; 17:322. [PMID: 40142986 PMCID: PMC11944958 DOI: 10.3390/pharmaceutics17030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may result in local optimal solutions. Inspired by the co-design philosophy, a formulation-process-product integrated design (FPPID) framework is innovatively brought forward to enable the target-oriented and simultaneous exploration of the formulation design space and the process design space. Methods: A combination of strategies, such as a material library, model-driven design (MDD), and simulation-supported solution generation, are used to manage the complexity of the multi-step development processes of HSWGT. The process model was developed at the intermediate level by incorporating dimensionless parameters from the wet granulation regime map approach into the process of the partial least square (PLS) model. The tablets tensile strength (TS) and solid fraction (SF) could be predicted from the starting materials' properties and process parameters. The material library was used to diversify the model input and improve the model's generalization ability. Furtherly, the mixture properties calculation model and the process model were interconnected. Results: A four-step FPPID methodology including the target definition, the formulation simulation, the process simulation, and the solution generation was implemented. The performance of FPPID was demonstrated through the efficient development of high-drug-loading tablets. Conclusions: As a holistic design method, the proposed FPPID offers great opportunity for designers to handle the complex interplay in the sequential development stages, facilitate instant decisions, and accelerate product development.
Collapse
Affiliation(s)
- Zichen Liang
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Xuefang Tang
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Liping Chen
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Yifei Liu
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Shuying Zhao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Xiao Ma
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Gan Luo
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Bing Xu
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, China; (Z.L.); (X.T.); (L.C.); (Y.L.); (S.Z.); (X.M.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| |
Collapse
|
2
|
Köster C, Kleinebudde P. Evaluation of binders in twin-screw wet granulation - Optimization of tabletability. Int J Pharm 2024; 659:124290. [PMID: 38821435 DOI: 10.1016/j.ijpharm.2024.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The influence of hydroxypropyl cellulose type (HPC-SSL SFP, HPC-SSL), concentration (2 %, 3.5 %, 5 %) and filler (lactose, calcium hydrogen phosphate (DCP)/microcrystalline cellulose (MCC)) on twin-screw wet granulation and subsequent tableting was studied. The aim was to identify the formulation of the highest tabletability which still fulfills the requirements of the disintegration. Lactose combined with 5 % binder enabled a higher tabletability and a faster disintegration than DCP/MCC. It was found that tabletability of lactose formulations can be increased by higher binder concentration and higher compression pressure while tabletability of DCP/MCC formulations can be only increased by higher compression pressure. It was observed that batches containing DCP/MCC failed the disintegration test, if the highest binder concentration and the highest compression pressure were used. To ensure a fast disintegration, the compression pressure or at least the binder concentration had to be low. Changing the disintegrant and its localization improved the DCP/MCC formulation, resulting in faster disintegration than lactose tablets. However, it also resulted in a lower tabletability. In this study best tablets were achieved with 3.5 % or 5 % binder and lactose as filler. These tablets presented the highest tabletability but still disintegrated in less than 500 s.
Collapse
Affiliation(s)
- Claudia Köster
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Peter Kleinebudde
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Cao J, Shen H, Zhao S, Ma X, Chen L, Dai S, Xu B, Qiao Y. Sample Size Requirements of a Pharmaceutical Material Library: A Case in Predicting Direct Compression Tablet Tensile Strength by Latent Variable Modeling. Pharmaceutics 2024; 16:242. [PMID: 38399296 PMCID: PMC10893091 DOI: 10.3390/pharmaceutics16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The material library is an emerging, new data-driven approach for developing pharmaceutical process models. How many materials or samples should be involved in a particular application scenario is unclear, and the impact of sample size on process modeling is worth discussing. In this work, the direct compression process was taken as the research object, and the effects of different sample sizes of material libraries on partial least squares (PLS) modeling in the prediction of tablet tensile strength were investigated. A primary material library comprising 45 materials was built. Then, material subsets containing 5 × i (i = 1, 2, 3, …, 8) materials were sampled from the primary material library. Each subset underwent sampling 1000 times to analyze variations in model fitting performance. Both hierarchical sampling and random sampling were employed and compared, with hierarchical sampling implemented with the help of the tabletability classification index d. For each subset, modeling data were organized, incorporating 18 physical properties and tableting pressure as the independent variables and tablet tensile strength as the dependent variable. A series of chemometric indicators was used to assess model performance and find important materials for model training. It was found that the minimum R2 and RMSE values reached their maximum, and the corresponding values were kept almost unchanged when the sample sizes varied from 20 to 45. When the sample size was smaller than 15, the hierarchical sampling method was more reliable in avoiding low-quality few-shot PLS models than the random sampling method. Two important materials were identified as useful for building an initial material library. Overall, this work demonstrated that as the number of materials increased, the model's reliability improved. It also highlighted the potential for effective few-shot modeling on a small material library by controlling its information richness.
Collapse
Affiliation(s)
- Junjie Cao
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Haoran Shen
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
| | - Shuying Zhao
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Xiao Ma
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Liping Chen
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Shengyun Dai
- National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Bing Xu
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| | - Yanjiang Qiao
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China; (J.C.); (H.S.); (S.Z.); (X.M.); (L.C.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China
| |
Collapse
|
4
|
Su J, Zhang K, Qi F, Cao J, Miao Y, Zhang Z, Qiao Y, Xu B. A tabletability change classification system in supporting the tablet formulation design via the roll compaction and dry granulation process. Int J Pharm X 2023; 6:100204. [PMID: 37560487 PMCID: PMC10407897 DOI: 10.1016/j.ijpx.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, the material library approach was used to uncover the pattern of tabletability change and related risk for tablet formulation design under the roll compaction and dry granulation (RCDG) process. 31 materials were fully characterized using 18 physical parameters and 9 compression behavior classification system (CBCS) parameters. Then, each material was dry granulated and sieved into small granules (125-250 μm) and large granules (630-850 μm), respectively. The compression behavior of granules was characterized by the CBCS descriptors, and were compared with that of ungranulated powders. The relative change of tabletability (CoTr) index was used to establish the tabletability change classification system (TCCS), and all materials were classified into three types, i.e. loss of tabletability (LoT, Type I), unchanged tabletability (Type II) and increase of tabletability (Type III). Results showed that approximately 65% of materials presented LoT, and as the granules size increased, 84% of the materials exhibited LoT. A risk decision tree was innovatively proposed by joint application of the CBCS tabletability categories and the TCCS tabletability change types. It was found that the LoT posed little risk to the tensile strength of the final tablet, when Category 1 or 2A materials, or Category 2B materials with Type II or Type III change of tabletability were used. Formulation risk happened to Category 2C or 3 materials, or Category 2B materials with Type I change of tabletability, particularly when high proportions of these materials were involved in tablet formulation. In addition, the risk assessment results were verified in the material property design space developed from a latent variable model in prediction of tablet tensile strength. Overall, results suggested that a combinational use of CBCS and TCCS could aid the decision making in selecting materials for tablet formulation design via RCDG.
Collapse
Affiliation(s)
- Junhui Su
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Kunfeng Zhang
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Feiyu Qi
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Junjie Cao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuhua Miao
- The International Department, No. 8 Middle School of Beijing, Beijing 100045, PR China
| | - Zhiqiang Zhang
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, PR China
| | - Yanjiang Qiao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Bing Xu
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| |
Collapse
|
5
|
Macho O, Gabrišová Ľ, Guštafík A, Jezso K, Juriga M, Kabát J, Blaško J. The Influence of Wet Granulation Parameters on the Compaction Behavior and Tablet Strength of a Hydralazine Powder Mixture. Pharmaceutics 2023; 15:2148. [PMID: 37631362 PMCID: PMC10458136 DOI: 10.3390/pharmaceutics15082148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this paper was to describe the influence of high-shear wet granulation process parameters on tablet tensile strength and compaction behavior of a powder mixture and granules containing hydralazine. The hydralazine powder mixture and eight types of granules were compacted into tablets and evaluated using the Heckel, Kawakita and Adams analyses. The granules were created using two types of granulation liquid (distilled water and aqueous solution of polyvinylpyrrolidone), at different impeller speeds (500 and 700 rpm) and with different wet massing times (without wet massing and for 2 min). Granulation resulted in improved compressibility, reduced dustiness and narrower particle-size distribution. A significant influence of wet massing time on parameters from the Kawakita and Adams analysis was found. Wet massing time had an equally significant effect on tablet tensile strength, regardless of the granulation liquid used. Granules formed with the same wet massing time showed the same trends in tabletability graphs. Tablets created using a single-tablet press (batch compaction) and an eccentric tablet press showed opposite values of tensile strength. Tablets from granules with a higher bulk density showed lower strength during batch compaction and, conversely, higher strength during eccentric tableting.
Collapse
Affiliation(s)
- Oliver Macho
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia
| | - Ľudmila Gabrišová
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia
| | - Adam Guštafík
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia
| | - Kristian Jezso
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia
| | - Martin Juriga
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia
| | - Juraj Kabát
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (J.K.); (J.B.)
| | - Jaroslav Blaško
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (J.K.); (J.B.)
| |
Collapse
|