1
|
Lee E, Yang D, Hong JH. Prominent Naturally Derived Oxidative-Stress-Targeting Drugs and Their Applications in Cancer Treatment. Antioxidants (Basel) 2025; 14:49. [PMID: 39857383 PMCID: PMC11760868 DOI: 10.3390/antiox14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The relationship between oxidative stress and cancer has been extensively studied and highlighted, along with its role in various aspects of angiogenesis. The modulation of oxidative levels and the adaptive mechanisms of oxidative stress in cancer systems are attractive research themes for developing anti-cancer strategies. Reactive oxygen species (ROS) are involved in various pathophysiological processes and play crucial roles in DNA damage and angiogenesis. Although cancer cells have developed various adaptive defense mechanisms against oxidative stress, excessive ROS production has been proposed as an anti-cancer strategy to induce cellular apoptosis. In particular, natural-source-based antioxidants have been identified as effective against cancers, and various delivery platforms have been developed to enhance their efficacy. In this review, we highlighted the anti-cancer components (plumbagin, quercetin, resveratrol, curcumin, xanthatin, carvacrol, telmisartan, and sulforaphane) that modulate ROS levels and the recent targeting platforms used to increase the application of anti-cancer drugs and the developed delivery platforms with diverse mechanisms of action. Further, we summarized the actual doses used and the effects of these drug candidates in various cancer systems. Overall, this review provides beneficial research themes for expanding cancer-targeting fields and addressing limited applications in diverse cancer types.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
2
|
Fang Z, Lin P, Gao R, Yang W, Zhou A, Yu W. Preparation, Characterization, and Anti-Lung Cancer Activity of Tetrandrine-Loaded Stealth Liposomes. Int J Nanomedicine 2024; 19:787-803. [PMID: 38293606 PMCID: PMC10825470 DOI: 10.2147/ijn.s431599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Background Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, is a potential candidate for cancer chemotherapy. However, Tet has poor aqueous solubility and a short half-life, which limits its bioavailability and efficacy. Liposomes have been widely utilized to enhance the bioavailability and efficacy of drugs. Methods In this study, Tet-loaded stealth liposomes (S-LPs@Tet) were prepared by ethanol injection method. Furthermore, physicochemical characterisation, biopharmaceutical behaviour, therapeutic efficacy, and biocompatibility of S-LPs@Tet were assessed. Results The prepared S-LPs@Tet had an average particle size of 65.57 ± 1.60 nm, a surface charge of -0.61 ± 0.10 mV, and an encapsulation efficiency of 87.20% ± 1.30%. The S-LPs@Tet released Tet in a sustained manner, and the results demonstrated that the formulation remained stable for one month. More importantly, S-LPs significantly enhanced the inhibitory ability of Tet on the proliferation and migration of lung cancer cells, and enabled Tet to escape phagocytosis by immune cells. Furthermore, in vivo studies confirmed the potential for long-circulation and potent tumor-suppressive effects of S-LPs@Tet. Moreover, ex vivo and in vivo safety experiments demonstrated that the carrier material S-LPs exhibited superior biocompatibility. Conclusion Our research suggested that S-LPs@Tet has potential applications in lung cancer treatment.
Collapse
Affiliation(s)
- Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Aizhen Zhou
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
3
|
Kessel D. Adventures in Photodynamic Therapy: Location, Location, Location. Photochem Photobiol 2023; 99:1364-1365. [PMID: 36890682 DOI: 10.1111/php.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
In the context of photodynamic therapy, reports periodically turn up in journals where reviewers are apparently unacquainted with the essentials. Bizarre procedures and results can thereby appear. This appears to be a byproduct of the publishing industry, especially for some of the "pay to play" options.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
4
|
Dias LD, Aguiar ASN, de Melo NJ, Inada NM, Borges LL, de Aquino GLB, Camargo AJ, Bagnato VS, Napolitano HB. Structural basis of antibacterial photodynamic action of curcumin against S. aureus. Photodiagnosis Photodyn Ther 2023; 43:103654. [PMID: 37308043 DOI: 10.1016/j.pdpdt.2023.103654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an alternative tool to commercial antibiotics for the inactivation of pathogenic bacteria (e.g., S. aureus). However, there is still a lack of understanding of the molecular modeling of the photosensitizers and their mechanism of action through oxidative pathways. Herein, a combined experimental and computational evaluation of curcumin as a photosensitizer against S. aureus was performed. The radical forms of keto-enol tautomers and the energies of curcumin's frontier molecular orbitals were evaluated by density functional theory (DFT) to point out the photodynamic action as well as the photobleaching process. Furthermore, the electronic transitions of curcumin keto-enol tautomers were undertaken to predict the transitions as a photosensitizer during the antibacterial photodynamic process. Moreover, molecular docking was used to evaluate the binding affinity with the S. aureus tyrosyl-tRNA synthetase as the proposed a target for curcumin. In this regard, the molecular orbital energies show that the curcumin enol form has a character of 4.5% more basic than the keto form - the enol form is a more promising electron donor than its tautomer. Curcumin is a strong electrophile, with the enol form being 4.6% more electrophilic than its keto form. In addition, the regions susceptible to nucleophilic attack and photobleaching were evaluated by the Fukui function. Regarding the docking analysis, the model suggested that four hydrogen bonds contribute to the binding energy of curcumin's interaction with the ligand binding site of S. aureus tyrosyl-tRNA synthetase. Finally, residues Tyr36, Asp40, and Asp177 contact curcumin and may contribute to orienting the curcumin in the active area. Moreover, curcumin presented a photoinactivation of 4.5 log unit corroborating the necessity of the combined action of curcumin, light, and O2 to promote the photooxidation damage of S. aureus. These computational and experimental data suggest insights regarding the mechanism of action of curcumin as a photosensitizer to inactivate S. aureus bacteria.
Collapse
Affiliation(s)
- Lucas D Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis GO, Brazil; Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
| | - Antônio S N Aguiar
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Nícolas J de Melo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Natalia M Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Leonardo L Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil; Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| | - Gilberto L B de Aquino
- Laboratório de Pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hamilton B Napolitano
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis GO, Brazil; Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
| |
Collapse
|
5
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|