1
|
Tournier N, Langer O. Imaging the Activity of Efflux Transporters at the Blood-Brain Barrier in Neurologic Diseases: Radiotracer Selection Criteria. J Nucl Med 2025:jnumed.124.269322. [PMID: 40015923 DOI: 10.2967/jnumed.124.269322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
Efflux transporters of the adenosine triphosphate-binding cassette (ABC) superfamily, such as P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), are highly expressed at the blood-brain barrier (BBB), where they contribute to maintaining brain homeostasis. P-gp may serve as an imaging biomarker to assess the contribution of BBB functionality rather than integrity to the onset or progression of various neurologic diseases. Considerable efforts have been made to develop radiolabeled P-gp substrates to assess cerebral P-gp activity with PET. However, initially developed radiotracers have limited clinical utility as they lack sensitivity to detect moderate, physiologically relevant changes in cerebral P-gp activity. Learning from this molecular imaging area has called for specific criteria, different from those classically used for other central nervous system targets, for developing and selecting suitable PET tracers to study ABC transporter activity at the BBB in different neurologic diseases.
Collapse
Affiliation(s)
- Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, INSERM, Orsay, France;
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; and
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Biali ME, Breuil L, Jackwerth M, Mairinger S, Weber M, Wölfl-Duchek M, Bamminger K, Rausch I, Nics L, Hacker M, Rodrigo S, Bouilleret V, Zeitlinger M, Pataraia E, Tournier N, Bauer M, Langer O. [ 11C]Metoclopramide PET can detect a seizure-induced up-regulation of cerebral P-glycoprotein in epilepsy patients. Fluids Barriers CNS 2024; 21:87. [PMID: 39465417 PMCID: PMC11514750 DOI: 10.1186/s12987-024-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND P-glycoprotein (P-gp) is an efflux transporter which is abundantly expressed at the blood-brain barrier (BBB) and which has been implicated in the pathophysiology of various brain diseases. The radiolabelled antiemetic drug [11C]metoclopramide is a P-gp substrate for positron emission tomography (PET) imaging of P-gp function at the BBB. To assess whether [11C]metoclopramide can detect increased P-gp function in the human brain, we employed drug-resistant temporal lobe epilepsy (TLE) as a model disease with a well characterised, regional P-gp up-regulation at the BBB. METHODS Eight patients with drug-resistant (DRE) TLE, 5 seizure-free patients with drug-sensitive (DSE) focal epilepsy, and 15 healthy subjects underwent brain PET imaging with [11C]metoclopramide on a fully-integrated PET/MRI system. Concurrent with PET, arterial blood sampling was performed to generate a metabolite-corrected arterial plasma input function for kinetic modelling. The choroid plexus was outmasked on the PET images to remove signal contamination from the neighbouring hippocampus. Using a brain atlas, 10 temporal lobe sub-regions were defined and analysed with a 1-tissue-2-rate constant compartmental model to estimate the rate constants for radiotracer transfer from plasma to brain (K1) and from brain to plasma (k2), and the total volume of distribution (VT = K1/k2). RESULTS DRE patients but not DSE patients showed significantly higher k2 values and a trend towards lower VT values in several temporal lobe sub-regions located ipsilateral to the epileptic focus as compared to healthy subjects (k2: hippocampus: +34%, anterior temporal lobe, medial part: +28%, superior temporal gyrus, posterior part: +21%). CONCLUSIONS [11C]Metoclopramide PET can detect a seizure-induced P-gp up-regulation in the epileptic brain. The efflux rate constant k2 seems to be the most sensitive parameter to measure increased P-gp function with [11C]metoclopramide. Our study provides evidence that disease-induced alterations in P-gp expression at the BBB can lead to changes in the distribution of a central nervous system-active drug to the human brain, which could affect the efficacy and/or safety of drugs. [11C]Metoclopramide PET may be used to assess or predict the contribution of increased P-gp function to drug resistance and disease pathophysiology in various brain diseases. TRIAL REGISTRATION EudraCT 2019-003137-42. Registered 28 February 2020.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Matthias Jackwerth
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Karsten Bamminger
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian Rodrigo
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Viviane Bouilleret
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
- Neurophysiologie et Epileptologie, Université Paris Saclay-APHP, Le Kremlin Bicêtre, Paris, France
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
El Biali M, Wölfl‐Duchek M, Jackwerth M, Mairinger S, Weber M, Bamminger K, Poschner S, Rausch I, Schindler N, Lozano IH, Jäger W, Nics L, Tournier N, Hacker M, Zeitlinger M, Bauer M, Langer O. St. John's wort extract with a high hyperforin content does not induce P-glycoprotein activity at the human blood-brain barrier. Clin Transl Sci 2024; 17:e13804. [PMID: 38700454 PMCID: PMC11067874 DOI: 10.1111/cts.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Division of Clinical Pharmacology and ToxicologyGeneva University HospitalsGenevaSwitzerland
| | - Michael Wölfl‐Duchek
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Matthias Jackwerth
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Severin Mairinger
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Maria Weber
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Karsten Bamminger
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Stefan Poschner
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Natalie Schindler
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | | | - Walter Jäger
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Lukas Nics
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS)Université Paris‐Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric JoliotOrsayFrance
| | - Marcus Hacker
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Markus Zeitlinger
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Martin Bauer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Oliver Langer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Hernández-Lozano I, Leterrier S, Mairinger S, Stanek J, Zacher AS, Breyer L, Hacker M, Zeitlinger M, Pahnke J, Tournier N, Wanek T, Langer O. Performance and Sensitivity of [ 99mTc]Tc-sestamibi Compared with Positron Emission Tomography Radiotracers to Measure P-glycoprotein Function in the Kidneys and Liver. Mol Pharm 2024; 21:932-943. [PMID: 38225758 PMCID: PMC10848257 DOI: 10.1021/acs.molpharmaceut.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.
Collapse
Affiliation(s)
| | - Sarah Leterrier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna S. Zacher
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Jens Pahnke
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab, University
of Oslo (UiO) and Oslo University Hospital (OUS), 0372 Oslo, Norway
- Lübeck
Institute of Experimental Dermatology (LIED), Pahnke Lab, University of Lübeck and University Medical
Center Schleswig-Holstein, 23538 Lübeck, Germany
- Department
of Pharmacology, Faculty of Medicine, University
of Latvia, 1004 Ri̅ga, Latvia
- Department
of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Thomas Wanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Breuil L, El Biali M, Vodovar D, Marie S, Auvity S, Bauer M, Goutal S, Rodrigo S, Langer O, Tournier N. Parametric Imaging of P-Glycoprotein Function at the Blood-Brain Barrier Using k E,brain-maps Generated from [ 11C]Metoclopramide PET Data in Rats, Nonhuman Primates and Humans. Mol Imaging Biol 2023; 25:1135-1141. [PMID: 37801196 DOI: 10.1007/s11307-023-01864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE PET imaging using [11C]metoclopramide revealed the importance of P-glycoprotein (P-gp, ABCB1) in mediating the brain-to-blood efflux of substrates across the blood-brain barrier (BBB). In this work, the elimination rate constant from the brain (kE,brain), calculated from dynamic PET images without the need for arterial blood sampling, was evaluated as an outcome parameter for the interpretation of [11C]metoclopramide PET data. PROCEDURES kE,brain parameter was obtained by linear regression of log-transformed brain time-activity curves (TACs). kE,brain values (h-1) obtained under baseline conditions were compared with values obtained after complete P-gp inhibition using tariquidar in rats (n = 4) and baboons (n = 4) or after partial inhibition using cyclosporine A in humans (n = 10). In baboons, the sensitivity of kE,brain to measure complete P-gp inhibition was compared with outcome parameters derived from kinetic modeling using a 1-tissue compartment model (1-TCM). Finally, kE,brain-maps were generated in each species using PMOD software. RESULTS The linear part of the log-transformed brain TACs occurred from 10 to 30 min after radiotracer injection in rats, from 15 to 60 min in baboons, and from 20 to 60 min in humans. P-gp inhibition significantly decreased kE,brain values by 39 ± 12% in rats (p < 0.01), by 32 ± 6% in baboons (p < 0.001), and by 37 ± 22% in humans (p < 0.001). In baboons, P-gp inhibition consistently decreased the brain-to-plasma efflux rate constant k2 (36 ± 9%, p < 0.01) leading to an increase in the total brain volume of distribution (VT, 101 ± 12%, p < 0.001). In all studied species, brain kE,brain-maps displayed decreased P-gp-mediated efflux across the BBB. CONCLUSIONS kE,brain of [11C]metoclopramide provides a simple outcome parameter to describe P-gp function in the living brain when arterial input function data are unavailable, although less sensitive than VT. kE,brain-maps represent easy to compute parametric images reflecting the effect of P-gp on [11C]metoclopramide elimination from the brain.
Collapse
Affiliation(s)
- Louise Breuil
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
- Inserm UMR-S1144, University of Paris Cité, 75006, Paris, France
| | - Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominique Vodovar
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
- Inserm UMR-S1144, University of Paris Cité, 75006, Paris, France
| | - Solène Marie
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
| | - Sylvain Auvity
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
- Inserm UMR-S1144, University of Paris Cité, 75006, Paris, France
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sébastien Goutal
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
| | - Sebastian Rodrigo
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicolas Tournier
- Inserm, CNRS, CEA, BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, CEA/SHFJ, 4 Place du Général Leclerc 91400, Orsay, France.
| |
Collapse
|