1
|
Malhotra S, Lijnse T, Cearbhaill EO, Brayden DJ. Devices to overcome the buccal mucosal barrier to administer therapeutic peptides. Adv Drug Deliv Rev 2025; 220:115572. [PMID: 40174726 DOI: 10.1016/j.addr.2025.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Peptide therapeutics are important in healthcare owing to their high target specificity, therapeutic efficacy, and relatively low side effect profile. Injections of these agents have improved thetreatment of chronic diseases including autoimmune, metabolic disorders, and cancer. However, their administration via injections can prove a barrier to patient acceptability of treatments. While oral delivery of these molecules is preferable, oral peptide formulations are associated with limited bioavailability due to degradation in the intestine and low epithelial permeability. Buccal administration of peptides is a potential alternative to injections and oral formulations. Similar to the oral route, the buccal route can promote better patient adherence to dosing regimens, along with the added advantages of not requiring restriction on food or drink consumption before and after administration, as well as avoidance of the liver first-pass metabolism. However, like oral, effective buccal absorption of peptides is still challenging due to the high epithelial permeability barrier. We present a multidisciplinary approach to understanding the buccal physiological barrier to macromolecule permeation and discuss how engineered devices may overcome it. Selected examples of buccal devices can facilitate fast and efficient macromolecule absorption through multiple mechanisms including physical disruption of epithelia, convection-based mass transfer, and a combination of physicochemical strategies. Importantly, minimally invasive devices can be self-applied and are associated with the maintenance of the barrier after exposure. We analysed the critical attributes that are required forthe clinical translation of buccal peptide administration devices. These include performance-driven device development, manufacturing features, patient acceptability, and commercial viability.
Collapse
Affiliation(s)
- Sahil Malhotra
- UCD School of Medicine, University College Dublin (UCD), -Belfield, Dublin 4, Ireland; Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Thomas Lijnse
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Eoin O' Cearbhaill
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - David J Brayden
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD School of Veterinary Medicine, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Brako F, Boateng J. Transmucosal drug delivery: prospects, challenges, advances, and future directions. Expert Opin Drug Deliv 2025; 22:525-553. [PMID: 39976299 DOI: 10.1080/17425247.2025.2470224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Traditional administration routes have limitations including first-pass metabolism and gastrointestinal degradation for sensitive drugs (oral) and pain associated with parenteral injections, which also require trained personnel and refrigeration, making them expensive. This has increased interest in alternative routes, with mucosal surfaces being of high priority. AREAS COVERED Mucosal routes include ocular, oral (buccal/sublingual), nasal and vaginal mucosae which avoid the limitations of the oral and parenteral routes. Though mucosal routes show great potential, they are still hindered by several barriers, especially for systemic absorption, resulting in the development of more advanced novel drug delivery systems to overcome these limitations and achieve therapeutic actions both locally and systemically, similar to or exceeding the oral route. This paper systematically reviews and compares the different mucosal routes, challenges, and recent advances in advanced novel drug delivery system design for emerging clinical challenges including the advent of large biological macromolecules (proteins, peptides, and RNA) for treatment and prevention of diseases. The review also focuses on current challenges and future perspectives. EXPERT OPINION Among the various transmucosal routes discussed, nose-to-brain drug delivery has the greatest translational potential to go beyond the current state of the art and achieve significant clinical impact for neurological diseases.
Collapse
Affiliation(s)
- Francis Brako
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| |
Collapse
|
3
|
Davis MM, Bajrovic I, Croyle MA. Assessment of In Vitro Models of the Human Buccal Mucosa for Vaccine and Adjuvant Development. Mol Pharm 2025. [PMID: 40139941 DOI: 10.1021/acs.molpharmaceut.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
To understand requirements for immunization via the oral mucosa, an in vitro model that recapitulates the physical barrier of the mouth, allows for quantification of antigen uptake and permeability and mounts an inflammatory response to antigen and adjuvant is needed. The physical structure of 4 models of the human oral mucosa was determined by histochemical staining and transepithelial electrical resistance (TEER) measurements. A TR146 based air-liquid interface (ALI) model most closely mimicked in vivo conditions. This was confirmed by validation studies using dextran and caffeine as diffusant molecules. Apparent permeability coefficients (Papp) of adenovirus (Ad) and adeno-associated virus (AAV) in this model were 4.3 × 10-13 and 2.2 × 10-10 respectively, while 100% of the total dose of H1N1 influenza remained in the epithelial layer. Sodium glycocholate and a hyperosmotic formulation improved the amount of Ad (p = 0.02) and AAV (p = 0.003) that entered the epithelium, respectively. Significant amounts of IL-6 (45.1 pg/mL), GM-CSF (94.7 pg/mL) and IFN-γ (4.3 pg/mL) were produced in response to influenza infection. Treatment with an AS03-like adjuvant induced production of IL-6 (34.9 pg/mL), TNF-∝ (43 pg/mL), GM-CSF (121.2 pg/mL) and IFN-γ (14.1 pg/mL). This highlights the contribution of differentiated epithelial cells to the immune response to vaccines and adjuvants.
Collapse
Affiliation(s)
- Madison M Davis
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Irnela Bajrovic
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria A Croyle
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
- John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Southward J, Liu F, Aspinall SR, Okwuosa TC. Exploring the potential of mucoadhesive buccal films in geriatric medicine. Drug Dev Ind Pharm 2025:1-21. [PMID: 39963906 DOI: 10.1080/03639045.2025.2467329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 03/08/2025]
Abstract
As the global demographic shifts toward an aging society, the geriatric patient population is steadily increasing. These patients often suffer from comorbidities and require numerous oral medications, which can be especially challenging for dysphagic geriatric patients. Mucoadhesive buccal films (MBFs) seem promising and could reduce pill burden, simplify administration, and enable individualized drug therapy. This review aims to explore the age-related changes in the oral cavity and their impact on MBF delivery, including potential strategies to overcome these age-related barriers to drug delivery. It was observed that aging impacts the oral mucosa as well the properties of the saliva. There are several studies in the application of buccal films including the use of a wide range of permeation enhancers. The 3D printing of buccal films seems to introduce dosing flexibility to buccal film manufacturing.
Collapse
Affiliation(s)
- Jasmine Southward
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Fang Liu
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Sam R Aspinall
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Tochukwu C Okwuosa
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| |
Collapse
|
5
|
Fantini A, Delledonne A, Casula L, Nicoli S, Pescina S, Cardia MC, Lai F, Sissa C, Santi P, Padula C. Application of Microneedles for High-Molecular-Weight Dextran Penetration Across the Buccal Mucosa. Pharmaceuticals (Basel) 2025; 18:158. [PMID: 40005972 PMCID: PMC11860016 DOI: 10.3390/ph18020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: This work aimed at investigating the effect of different microneedle-based strategies on the permeation of high-molecular-weight model molecules (fluorescently labeled dextrans (FDs), 70 and 150 kDa) across the buccal mucosa. Methods: Two different approaches were evaluated: (1) stainless steel microneedles (MNs) of 500 µm height used for tissue pre-treatment; and (2) soluble microneedles of different lengths (150, 500, and 800 µm), made of polyvinylpyrrolidone and FDs, prepared using the solvent casting technique. Porcine esophageal epithelium was used as a model for the buccal mucosa. Results: The application of soluble MNs promoted high-molecular-weight dextran transport across pig esophageal epithelium. The transport was proportional to MN length, with a minimum of 500 µm, regardless of the molecular weight of the FDs. The use of solid MNs of the same length to pre-treat the tissue, followed by the application of a solution of the permeant, did not produce the same effect in terms of onset of permeation, which was found to be much slower. Conclusions: The results obtained show that by applying soluble MNs of appropriate length (500 and 800 µm), the transport of high-molecular-weight dextrans (70 and 150 kDa) across and into the mucosal tissue occurs very rapidly. The multiphoton microscopy analysis confirmed the presence of holes in the tissue and the presence of fluorescein-labeled dextrans.
Collapse
Affiliation(s)
- Adriana Fantini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (A.D.); (C.S.)
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (A.D.); (C.S.)
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| |
Collapse
|
6
|
Sabra R, Kirby D, Chouk V, Malgorzata K, Mohammed AR. Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics 2024; 16:1563. [PMID: 39771541 PMCID: PMC11676059 DOI: 10.3390/pharmaceutics16121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Buccal drug delivery emerges as a promising strategy to enhance the absorption of drugs classified under the Biopharmaceutics Classification System (BCS) Class III, characterized by high solubility and low permeability. However, addressing the absorption challenges of BCS Class III drugs necessitates innovative formulation strategies. This review delves into optimizing buccal drug delivery for BCS III drugs, focusing on various formulation approaches to improve absorption. Strategies such as permeation enhancers, mucoadhesive polymers, pH modifiers, ion pairing, and prodrugs are systematically explored for their potential to overcome challenges associated with BCS Class III drugs. The mechanistic insight into how these strategies influence drug absorption is discussed, providing a detailed understanding of their applicability. Furthermore, the review advocates for integrating conventional buccal dosage forms with these formulation approaches as a potential strategy to enhance absorption. By emphasizing bioavailability enhancement, this review contributes to a holistic understanding of optimizing buccal absorption for BCS Class III drugs, presenting a unified approach to overcome inherent limitations in their delivery.
Collapse
Affiliation(s)
- Rayan Sabra
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Daniel Kirby
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| | - Vikram Chouk
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Kleta Malgorzata
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Afzal R. Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| |
Collapse
|
7
|
Franzé S, Rama F, Scarpa E, Violatto MB, Peqini K, Gennari CGM, Anderluzzi G, Camastra R, Salmaso A, Moscatiello G, Pellegrino S, Rizzello L, Bigini P, Cilurzo F. Mucosa-penetrating liposomes for esophageal local drug delivery. Int J Pharm 2024; 661:124413. [PMID: 38960342 DOI: 10.1016/j.ijpharm.2024.124413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Local drug delivery to the esophagus is hampered by rapid transit time and poor permeability of the mucosa. If some strategies aimed to improve the residence time have been proposed, non-invasive approaches to increase the drug penetration in the mucosa have not been described so far. Herein, we designed mucosa-penetrating liposomes to favor the penetration and retention of curcumin (CURC) in the esophagus. A novel mucosa penetrating peptide (MPP), SLENKGP, was selected by Phage Display and conjugated to pegylated liposomes at different PEG and MPP's surface densities. Pegylation assured a long residence time of liposomes (at least 30 min) in the esophagus in vivo, but it did not favor the penetration of CURC in the mucosa. MPP-decorated liposomes instead delivered a significant higher amount of CURC in the mucosa compared to naked pegylated liposomes. Confocal microscopy studies showed that naked pegylated liposomes remain confined in the superficial layers of the mucosa whereas MPP-decorated liposomes penetrate the whole epithelium. In vitro, MPP reduced the interaction of PEG with mucin, meanwhile favoring the paracellular penetration of liposomes across epithelial cell multilayers. In conclusion, pegylated liposomes represent a valid approach to target the esophagus and the surface functionalization with MPP enhances their penetration in the mucosa.
Collapse
Affiliation(s)
- Silvia Franzé
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy.
| | - Francesco Rama
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Martina Bruna Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Kaliroi Peqini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | | | - Giulia Anderluzzi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Rebecca Camastra
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anita Salmaso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giulia Moscatiello
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| |
Collapse
|
8
|
PALEI NN, MOHANTA BC, RAJANGAM J, GUPTHA PM. Olmesartan Medoxomil-Loaded Niosomal Gel for Buccal Delivery: Formulation, Optimization, and Ex Vivo Studies. Turk J Pharm Sci 2024; 21:199-210. [PMID: 38994813 PMCID: PMC11590553 DOI: 10.4274/tjps.galenos.2023.93765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/13/2024]
Abstract
Objectives Olmesartan medoxomil (OLM) is a low bioavailability antihypertensive drug. This study aimed to prepare and optimize an OLM niosomal gel and investigate drug permeation via a chicken buccal pouch. Materials and Methods OLM-loaded niosome were prepared using a film hydration technique. The vesicle size, zeta potential, entrapment efficiency, and percentage cumulative drug release of niosome were evaluated. The niosomes were incorporated into a Carbopol 974P (1.5% w/v) gel, and the drug permeability of the niosomal gel was evaluated. The formulations of the niosomal gel were optimized using the Box-Behnken design. The optimized formulation was further characterized by transmission electron microscopy (TEM) and Fourier transform infrared radiation analysis. Results The particle size and zeta potential of the optimized niosomal formulations were 296.4 nm and -38.4 mV, respectively. Based on TEM analysis, the niosomes were found to be spherical in shape. The permeability, flux, and permeability coefficient of the optimized niosomal gel were 0.507 mg/cm2, 0.083 mg/cm2 × hour, and 041 cm/hour, respectively. Histopathological evaluation revealed that the niosomal gel had better permeability than the OLM gel. Conclusion Based on the results of the OLM niosomal gel, it can be concluded that the formulation can be beneficial in increasing bioavailability, resulting in better therapeutic efficacy.
Collapse
Affiliation(s)
| | - Bibhash Chandra MOHANTA
- Department of Pharmacy, Faculty of Health Science, Central University of South Bihar, Gaya, India
| | | | | |
Collapse
|
9
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
11
|
Dubashynskaya NV, Petrova VA, Skorik YA. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int J Mol Sci 2024; 25:5359. [PMID: 38791397 PMCID: PMC11120705 DOI: 10.3390/ijms25105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
12
|
de Araujo DR, Padula C. Topical Drug Delivery: Innovative Controlled Release Systems. Pharmaceutics 2023; 15:1716. [PMID: 37376164 DOI: 10.3390/pharmaceutics15061716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most innovative strategies for administrating bioactive molecules is the design of adequate drug delivery systems [...].
Collapse
Affiliation(s)
- Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, ABC Federal University, Santo Andre 09210-580, SP, Brazil
- Drugs and Bioactives Delivery Systems Research Group-SISLIBIO, ABC Federal University, Santo Andre 09210-580, SP, Brazil
| | - Cristina Padula
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| |
Collapse
|