1
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
2
|
Xing L, Wang Z, Feng Y, Luo H, Dai G, Sang L, Zhang C, Qian J. The biological roles of CD47 in ovarian cancer progression. Cancer Immunol Immunother 2024; 73:145. [PMID: 38832992 PMCID: PMC11150368 DOI: 10.1007/s00262-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Haixia Luo
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Guijiang Dai
- Department of Comprehensive Office, The Second Affiliated Hospital of MuDanjiang Medical University, Mudanjiang, 157009, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, People's Hospital of Anji, Huzhou, 310022, People's Republic of China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
3
|
Dymova MA, Malysheva DO, Popova VK, Dmitrienko EV, Endutkin AV, Drokov DV, Mukhanov VS, Byvakina AA, Kochneva GV, Artyushenko PV, Shchugoreva IA, Rogova AV, Tomilin FN, Kichkailo AS, Richter VA, Kuligina EV. Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact. Molecules 2024; 29:848. [PMID: 38398600 PMCID: PMC10892425 DOI: 10.3390/molecules29040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Aptamers are currently being investigated for their potential to improve virotherapy. They offer several advantages, including the ability to prevent the aggregation of viral particles, enhance target specificity, and protect against the neutralizing effects of antibodies. The purpose of this study was to comprehensively investigate an aptamer capable of enhancing virotherapy. This involved characterizing the previously selected aptamer for vaccinia virus (VACV), evaluating the aggregation and molecular interaction of the optimized aptamers with the recombinant oncolytic virus VV-GMCSF-Lact, and estimating their immunoshielding properties in the presence of human blood serum. We chose one optimized aptamer, NV14t_56, with the highest affinity to the virus from the pool of several truncated aptamers and built its 3D model. The NV14t_56 remained stable in human blood serum for 1 h and bound to VV-GMCSF-Lact in the micromolar range (Kd ≈ 0.35 μM). Based on dynamic light scattering data, it has been demonstrated that aptamers surround viral particles and inhibit aggregate formation. In the presence of serum, the hydrodynamic diameter (by intensity) of the aptamer-virus complex did not change. Microscale thermophoresis (MST) experiments showed that NV14t_56 binds with virus (EC50 = 1.487 × 109 PFU/mL). The analysis of the amplitudes of MST curves reveals that the components of the serum bind to the aptamer-virus complex without disrupting it. In vitro experiments demonstrated the efficacy of VV-GMCSF-Lact in conjunction with the aptamer when exposed to human blood serum in the absence of neutralizing antibodies (Nabs). Thus, NV14t_56 has the ability to inhibit virus aggregation, allowing VV-GMCSF-Lact to maintain its effectiveness throughout the storage period and subsequent use. When employing aptamers as protective agents for oncolytic viruses, the presence of neutralizing antibodies should be taken into account.
Collapse
Affiliation(s)
- Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Victoria K. Popova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Anton V. Endutkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Danil V. Drokov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Vladimir S. Mukhanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Arina A. Byvakina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Galina V. Kochneva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | - Polina V. Artyushenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Irina A. Shchugoreva
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Anastasia V. Rogova
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Felix N. Tomilin
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Kirensky Institute of Physics, 50/38 Akademgorodok, 660012 Krasnoyarsk, Russia
| | - Anna S. Kichkailo
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| |
Collapse
|
4
|
Zhu Y, Yang D, Guo T, Lin M. Use of S2.2/DOX Magnetic Nanoliposomes in MR Molecule Imaging and Targeted Thermochemotherapy for Breast Cancer In Vitro. Technol Cancer Res Treat 2023; 22:15330338231194498. [PMID: 37563954 PMCID: PMC10422896 DOI: 10.1177/15330338231194498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To prepare S2.2/DOX magnetic nanoliposomes by combining the potential benefits of MNPs in MRI and the targeted performance of nano-drugs as an innovative method for integrated diagnosis and treatment of breast cancer (BC). METHODS We created a S2.2-PEG-MZF/DOX molecular probe by using a lipid material to encapsulate PEG-MZF-NPs and doxorubicin (DOX), and a S2.2 aptamer to target MUC1 to conjugate with PEG-MZF/DOX nanoliposomes. The potential of probe for cell-specific targeting and magnetic resonance (MR) molecular imaging was evaluated by MR scanner and Prussian blue staining. Additionally, we explored the feasibility by using nanoliposome magnetic induction heating to interfere with MCF-7 (MUC1+) BC cells under the influence of an alternating magnetic field (AMF). RESULTS PEG-MZF-NPs were biologically safe. The T2 relaxation rate of PEG-MZF-NPs was found to inhibit T2 signal in a concentration-dependent manner, and the T2 signal of the S2.2-PEG-MZF molecular probe in MCF-7 cells was significantly lower than that in PEG-MZF-NPs group. Moreover, the T2 signal reduction was more pronounced in MCF-7 cells than in the hepatoma cell line HepG2 (MUC1-), suggesting a strong MRI potential of the S2.2-PEG-MZF molecular probe. The S2.2-PEG-MZF/DOX nanoliposome was able to achieve the desired temperature range for tumor hyperthermia (42-44 °C) in vitro. The S2.2-PEG-MZF/DOX nanoliposome accompanied by magnetic fluid hyperthermia (MFH) could inhibit proliferation and invasion and induce apoptosis of MCF-7 cells. The effects of this approach were significantly higher than those observed in the other groups. CONCLUSION We successfully developed a novel technique for BC diagnosis and treatment using thermochemotherapy under the guidance of MR molecular imaging. This approach holds great potential for improving the management of this devastating disease in the future.
Collapse
Affiliation(s)
- Yinxing Zhu
- Taizhou School of Clinical Medicine, Nanjing Medical University, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Dazhuang Yang
- Imaging Department, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|