1
|
Khramtsov YV, Bunin ES, Ulasov AV, Lupanova TN, Georgiev GP, Sobolev AS. GALA3-Containing Modular Nanotransporters Are Capable of Delivering Keap1 Monobody to Target Cells and Inhibiting the Formation of Reactive Oxygen Species in the Cells. DOKL BIOCHEM BIOPHYS 2025:10.1134/S1607672924601252. [PMID: 39899249 DOI: 10.1134/s1607672924601252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
In the previously created modular nanotransporter (MNT) capable of delivering a monobody to Keap1 into the cytosol, the endosomolytic module, translocation domain of diphtheria toxin (DTox), was replaced by the endosomolytic peptide GALA3. It was found that this substitution more than doubles the lifetime of MNT in the blood. Using confocal microscopy, it was shown that MNT with GALA3 was internalized into AML12 cells mainly due to binding to the epidermal growth factor receptor, and is also able to exit from endosomes into the cytosol. Using cellular thermal shift assay, it was shown that MNT with GALA3 and MNT with DTox are equally effective in disrupting the formation of the Nrf2 complex with Keap1, which led to similar protection of AML12 cells from the action of hydrogen peroxide. The obtained results allow not only optimizing the systemic use of MNT, but can also serve as a basis for creating agents aimed at treating diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | - E S Bunin
- Institute of Gene Biology, RAS, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, RAS, Moscow, Russia
| | | | | | - A S Sobolev
- Institute of Gene Biology, RAS, Moscow, Russia.
- Moscow State University, Moscow, Russia.
| |
Collapse
|
2
|
Searle BC. Characterizing protein-protein interactions with thermal proteome profiling. Curr Opin Struct Biol 2024; 89:102946. [PMID: 39481280 PMCID: PMC11602378 DOI: 10.1016/j.sbi.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Thermal proteome profiling (TPP) is an innovative technique that uses the principle of protein thermal stability to identify potential protein interaction partners. Employing quantitative mass spectrometry, TPP measures protein stability across the proteome, offering a comprehensive snapshot of protein interactions in a single experiment. When studying protein-protein interactions (PPI), TPP leverages changes in apparent protein melting temperatures to identify transient and weak interactions that most traditional PPI detection methodologies struggle to measure. This review discusses current TPP methodologies, the challenges of interpreting the resulting complex datasets, and opportunities to deepen and improve PPI networks. By advancing our grasp of intricate protein interactions, TPP promises to illuminate the molecular basis of diseases and drive the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, OH, 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Slastnikova TA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Pharmaceutics 2024; 16:1345. [PMID: 39458673 PMCID: PMC11511107 DOI: 10.3390/pharmaceutics16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The study of oxidative stress in cells and ways to prevent it attract increasing attention. Antioxidant defense of cells can be activated by releasing the transcription factor Nrf2 from a complex with Keap1, its inhibitor protein. The aim of the work was to study the effect of the modular nanotransporter (MNT) carrying an R1 anti-Keap1 monobody (MNTR1) on cell homeostasis. Methods: The murine hepatocyte AML12 cells were used for the study. The interaction of fluorescently labeled MNTR1 with Keap1 fused to hrGFP was studied using the Fluorescence-Lifetime Imaging Microscopy-Förster Resonance Energy Transfer (FLIM-FRET) technique on living AML12 cells transfected with the Keap1-hrGFP gene. The release of Nrf2 from the complex with Keap1 and its levels in the cytoplasm and nuclei of the AML12 cells were examined using a cellular thermal shift assay (CETSA) and confocal laser scanning microscopy, respectively. The effect of MNT on the formation of reactive oxygen species was studied by flow cytometry using 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Results: MNTR1 is able to interact with Keap1 in the cytoplasm, leading to the release of Nrf2 from the complex with Keap1 and a rapid rise in Nrf2 levels both in the cytoplasm and nuclei, ultimately causing protection of cells from the action of hydrogen peroxide. The possibility of cleavage of the monobody in endosomes leads to an increase in the observed effects. Conclusions: These findings open up a new approach to specifically modulating the interaction of intracellular proteins, as demonstrated by the example of the Keap1-Nrf2 system.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
4
|
Khramtsov YV, Ulasov AV, Lupanova TN, Slastnikova TA, Rosenkranz AA, Bunin ES, Georgiev GP, Sobolev AS. Intracellular Degradation of SARS-CoV-2 N-Protein Caused by Modular Nanotransporters Containing Anti-N-Protein Monobody and a Sequence That Recruits the Keap1 E3 Ligase. Pharmaceutics 2023; 16:4. [PMID: 38276482 PMCID: PMC10818351 DOI: 10.3390/pharmaceutics16010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The proper viral assembly relies on both nucleic acids and structural viral proteins. Thus a biologically active agent that provides the degradation of one of these key proteins and/or destroys the viral factory could suppress viral replication efficiently. The nucleocapsid protein (N-protein) is a key protein for the SARS-CoV-2 virus. As a bioactive agent, we offer a modular nanotransporter (MNT) developed by us, which, in addition to an antibody mimetic to the N-protein, contains an amino acid sequence for the attraction of the Keap1 E3 ubiquitin ligase. This should lead to the subsequent degradation of the N-protein. We have shown that the functional properties of modules within the MNT permit its internalization into target cells, endosome escape into the cytosol, and binding to the N-protein. Using flow cytometry and western blotting, we demonstrated significant degradation of N-protein when A549 and A431 cells transfected with a plasmid coding for N-protein were incubated with the developed MNTs. The proposed MNTs open up a new approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Egor S. Bunin
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
5
|
Khramtsov YV, Ulasov AV, Lupanova TN, Georgiev GP, Sobolev AS. Quantitative Description of the N-Protein of the SARS-CoV-2 Virus Degradation in Cells Stably Expressing It under the Influence of New Modular Nanotransporters. DOKL BIOCHEM BIOPHYS 2023; 513:S63-S66. [PMID: 38379079 DOI: 10.1134/s1607672923700709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
Two eukaryotic cell lines, A549 and A431, with stable expression of the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus fused with the red fluorescent protein mRuby3 were obtained. Using microscopy, the volumes of the cytoplasm and nucleus were determined for these cells. Using quantitative immunoblotting techniques, the concentrations of the N-mRuby3 fusion protein in their cytoplasm were assessed. They were 19 and 9 μM for A549 and A431 cells, respectively. Using these concentrations, the initial rate of N-protein degradation in the studied cells was estimated from the decrease in cell fluorescence. In A549 and A431 cells, it was the same (84 nM per hour). The approach of quantitatively describing the degradation process can be applied to analyze the effectiveness of a wide class of antiviral drugs that cause degradation of viral proteins.
Collapse
Affiliation(s)
- Y V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Khramtsov YV, Ulasov AV, Slastnikova TA, Rosenkranz AA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Delivering Biologically Active Molecules to the Surface of Mitochondria. Pharmaceutics 2023; 15:2687. [PMID: 38140028 PMCID: PMC10748074 DOI: 10.3390/pharmaceutics15122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of various diseases, in particular cancer, usually requires the targeting of biologically active molecules at a selected subcellular compartment. We modified our previously developed modular nanotransporters (MNTs) for targeting mitochondria. The new MNTs are capable of binding to the protein predominantly localized on the outer mitochondrial membrane, Keap1. These MNTs possessing antiKeap1 monobody co-localize with mitochondria upon addition to the cells. They efficiently interact with Keap1 both in solution and within living cells. A conjugate of the MNT with a photosensitizer, chlorin e6, demonstrated significantly higher photocytotoxicity than chlorin e6 alone. We assume that MNTs of this kind can improve efficiency of therapeutic photosensitizers and radionuclides emitting short-range particles.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
7
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|