1
|
Yingngam B, Makewilai L, Chaisawat S, Yingngam K, Chaiburi C, Khumsikiew J, Netthong R. Vibration-assisted Microbead Production: A New Frontier for Biocompatible Surfaces. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:251-285. [DOI: 10.1039/9781837675555-00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The encapsulation of active pharmaceutical ingredients (APIs) in microbeads is an essential step in drug delivery; however, it is also inherently associated with the need to control particle size and drug release profiles. Nevertheless, most conventional methods of microencapsulation fail to provide consistent results. A new method called vibration-assisted microbead coating is a novel unified technique utilizing mechanical vibrations to enable the controlled, uniform coating of microbeads on APIs. This chapter discusses the technology of vibration-assisted encapsulation performed by the authors through microbead formation and the physical activity of coating APIs. This chapter focuses on achieving uniform control of the final coated surface of the API, microbead shape, size, and loading through vibration parameters. Additionally, this chapter discusses the biocompatibility and stability of the final coated surface. This new means of encapsulation has high potential for drug delivery. This method reduces most of the traditional challenges of encapsulation, if not eliminates them, and is more reliable. Based on the abovementioned findings, the authors propose the following main areas for their further work: optimisation of vibration parameters for various APIs, research into the long-term stability of the loading–release profile, and possible use of the technique in targeted drug delivery.
Collapse
Affiliation(s)
- B. Yingngam
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - L. Makewilai
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - S. Chaisawat
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - K. Yingngam
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - C. Chaiburi
- cFaculty of Science and Digital Innovation, Thaksin University (Phattalung Campus), Pa Payom, Phattalung, 93210, Thailand
| | - J. Khumsikiew
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - R. Netthong
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
2
|
Zhang T, Lu W, Cai LL, Chen JY, Qiu ML, Chen ZW, Pan H, Liu ZC, Lu Z, Cai H. Transformation of Metal-Organic Framework from Kinetic to Thermodynamic Product for Controlled Delivery of Vitamin C. Inorg Chem 2024; 63:14345-14353. [PMID: 39033409 DOI: 10.1021/acs.inorgchem.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A biocompatible metal-organic framework (MOF), named HSTC-4, constructed using the flexible 4,4'-oxybis(benzoic acid) (OBA), was developed to enable efficient loading and controlled release of vitamin C (VC) through a combination of strategies involving ligand length, structure design, and metal selection. The kinetic product HSTC-4 demonstrates a propensity for transforming into the thermodynamically stable HSTC-5 under external stimuli, such as photoillumination and vacuum heating, as witnessed by single-crystal to single-crystal transformation. Density functional theory (DFT) calculations reveal that the VC guest molecules exhibit stronger binding affinity with HSTC-5 due to its narrower pores compared to HSTC-4, resulting in a slower release of VC from VC@HSTC-5. Furthermore, precise control over VC release can be achieved by introducing surface modifications involving SiO2 onto the structure of VC@HSCT-5, while simultaneously adjusting environmental factors such as pH and temperature conditions. Preliminary cell culture experiments and cytotoxicity assays highlight the biocompatibility of HSTC-5, suggesting that it is a promising platform for sustained drug delivery and diverse biomedical applications.
Collapse
Affiliation(s)
- Ting Zhang
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Wen Lu
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Li-Lu Cai
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Jing-Ying Chen
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Miao-Ling Qiu
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Zi-Wei Chen
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Hui Pan
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Zhi-Cong Liu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Zhou Lu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Hong Cai
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| |
Collapse
|
3
|
Hassan AAA, Sovány T, Pamlényi K, Deák M, Hornok V, Csapó E, Regdon G, Csóka I, Kristó K. QbD Approach-Based Preparation and Optimization of Hydrophobic Ion-Pairing Complex of Lysozyme with Sodium Dodecyl Sulphate to Enhance Stability in Lipid-Based Carriers. Pharmaceutics 2024; 16:589. [PMID: 38794251 PMCID: PMC11125345 DOI: 10.3390/pharmaceutics16050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods.
Collapse
Affiliation(s)
- Alharith A. A. Hassan
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum P.O. Box 1996, Sudan
| | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| | - Krisztián Pamlényi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| | - Martin Deák
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| | - Viktória Hornok
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (V.H.); (E.C.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (V.H.); (E.C.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| | - Katalin Kristó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.A.A.H.); (T.S.); (K.P.); (M.D.); (I.C.)
| |
Collapse
|
4
|
Gedawy A, Al-Salami H, Dass CR. Polydimethylsiloxane Organic-Inorganic Composite Drug Reservoir with Gliclazide. Int J Mol Sci 2024; 25:3991. [PMID: 38612802 PMCID: PMC11012350 DOI: 10.3390/ijms25073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A novel organic-inorganic gliclazide-loaded composite bead was developed by an ionic gelation process using acidified CaCl2, chitosan and tetraethylorthosilicate (TEOS) as a crosslinker. The beads were manufactured by crosslinking an inorganic silicone elastomer (-OH terminated polydimethylsiloxane, PDMS) with TEOS at different ratios before grafting onto an organic backbone (Na-alginate) using a 32 factorial experimental design. Gliclazide's encapsulation efficiency (EE%) and drug release over 8 h (% DR 8 h) were set as dependent responses for the optimisation of a pharmaceutical formula (herein referred to as 'G op') by response surface methodology. EE % and %DR 8 h of G op were 93.48% ± 0.19 and 70.29% ± 0.18, respectively. G op exhibited a controlled release of gliclazide that follows the Korsmeyer-Peppas kinetic model (R2 = 0.95) with super case II transport and pH-dependent swelling behaviour. In vitro testing of G op showed 92.17% ± 1.18 cell viability upon testing on C2C12 myoblasts, indicating the compatibility of this novel biomaterial platform with skeletal muscle drug delivery.
Collapse
Affiliation(s)
- Ahmed Gedawy
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| |
Collapse
|