1
|
Awde Alfonso HG, Tártara LI, Paredes AJ, Palma SD, Formica ML. Enhanced in vivo performance of topical ocular acetazolamide nanocrystals: A novel approach for glaucoma treatment. Int J Pharm 2025; 674:125440. [PMID: 40089041 DOI: 10.1016/j.ijpharm.2025.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
High intraocular pressure (IOP) is the main risk factor for glaucoma progression. Acetazolamide (AZM) presents a potent IOP-lowering effect but is only administered orally due to its low aqueous solubility and ocular permeability. This study aimed to develop AZM nanocrystals (AZM-NC) as an alternative for its topical ocular delivery. AZM-NC were obtained by wet bead milling technique followed by spray-drying, and a mixture design study was conducted to evaluate the optimal drug-to-stabilizer ratio regarding colloidal properties and stability. AZM-NC exhibited an average particle size of 299.7 ± 8.8 nm, a polydispersity index of 0.13 ± 0.01, and a zeta potential of -29.0 ± 0.9 mV, which remained mostly unchanged for at least 60 days when the dried powder was stored at room temperature. Fourier-transformed spectroscopy and powder X-ray diffraction analyses revealed no chemical or crystallinity changes in AZM-NC compared with AZM, respectively. Additionally, AZM-NC demonstrated increased drug saturation concentration, globular shapes, and higher adhesive properties than normal-sized AZM powder. Topical ocular administration of AZM-NC in albino male rabbits showed no clinical signs of ocular damage. Further, in vivo studies revealed a significant IOP reduction of up to 32 % of the basal IOP (-4.8 ± 1.2 mmHg, p < 0.05) in normotensive rabbit eyes (n = 7), after 4 h of AZM-NC suspension topical application, compared to groups treated with AZM suspension, normal saline solution and, AZOPT® (-1.8 ± 1.4 mmHg). Thus, AZM-NC could present a promising approach for developing an eye drop formulation for the localized management of glaucoma.
Collapse
Affiliation(s)
- Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa, 1085, Córdoba 5000, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
2
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
3
|
Formica ML, Pernochi Scerbo JM, Awde Alfonso HG, Palmieri PT, Ribotta J, Palma SD. Nanotechnological approaches to improve corticosteroids ocular therapy. Methods 2025; 234:152-177. [PMID: 39675541 DOI: 10.1016/j.ymeth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance. Designing novel drug delivery systems based on nanotechnological tools is a useful approach to overcome disadvantages associated with the ocular delivery of corticosteroids. Nanoparticle-based drug delivery systems represent an alternative to the current dosage forms for the ocular administration of corticosteroids, since due to their particle size and the properties of their materials, they can increase their solubility, improve ocular permeability, control their release and increase bioavailability after their ocular administration. In this way, lipid and polymer-based nanoparticles have been the main strategies developed, giving rise to novel patent applications to protect these innovative drug delivery systems as a product, its preparation or administration method. Additionally, it should be noted that at least 10 clinical trials are being carried out to evaluate the ocular application of different pharmaceutical formulations based on corticosteroid-loaded nanoparticles. Through a comprehensive and extensive analysis, this review highlights the impact of nanotechnology applications in ocular inflammation therapy with corticosteroids.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Juan Matías Pernochi Scerbo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pablo Tomás Palmieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Julieta Ribotta
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
4
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
5
|
Doci RSA, Carvalho FFD, Gomes RC, Gianini RJ, Fanelli C, Noronha IDL, Santos NBD, Hausen MDA, Komatsu D, Randazzo-Moura P. Pharmacological effects of triamcinolone associated with surgical glue on cutaneous wound healing in rats. Acta Cir Bras 2024; 39:e399624. [PMID: 39661810 DOI: 10.1590/acb399624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE The surgical glue is widely used in closing cutaneous surgical wounds. Corticosteroids are indicated for their anti-inflammatory and immunomodulatory properties. The present work evaluated the pharmacological effects of triamcinolone (AT) incorporated into surgical glue (C) on the initial phase of the wound healing process in Wistar rats. METHODS Through in-vivo studies, the effects of the healing process, C or C+AT in the same rat were evaluated for seven and 14 days post-surgery. RESULTS The C+AT association did not change the physicochemical properties of the polymer. This association in wound healing confirmed the anti-inflammatory and immunomodulatory effects of the corticosteroid, with less neovascularization and fibrosis, in addition to the remodeling of the extracellular matrix carried out by the balance of myofibroblasts and less dense collagen fibers, culminating in tissue regeneration and possible reduction of side effects. CONCLUSION This association is a powerful and innovative pharmacological tool, promising in translational medicine.
Collapse
Affiliation(s)
- Rosana Soares Araújo Doci
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Filipe Feitosa de Carvalho
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Rodrigo César Gomes
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Biomaterials Laboratory - São Paulo (SP) - Brazil
| | - Reinaldo José Gianini
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Camilla Fanelli
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Irene de Lourdes Noronha
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Nelson Brancaccio Dos Santos
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Pathology Laboratory - São Paulo (SP) - Brazil
| | - Moema de Alencar Hausen
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Daniel Komatsu
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Priscila Randazzo-Moura
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| |
Collapse
|
6
|
Mercadal P, González A, Beloqui A, Tomé LC, Mecerreyes D, Calderón M, Picchio ML. Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow. JACS AU 2024; 4:3744-3758. [PMID: 39483226 PMCID: PMC11522931 DOI: 10.1021/jacsau.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO2 separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.
Collapse
Affiliation(s)
- Pablo
A. Mercadal
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
- Facultad
de Ciencias Agropecuarias, Departamento de Recursos Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Agustín González
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
| | - Ana Beloqui
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Liliana C. Tomé
- CEMMPRE,
ARISE, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - David Mecerreyes
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
7
|
Arabpour Z, Salehi M, An S, Moghtader A, Anwar KN, Baharnoori SM, Shah RJ, Abedi F, Djalilian AR. Exploring Hydrogel Nanoparticle Systems for Enhanced Ocular Drug Delivery. Gels 2024; 10:589. [PMID: 39330191 PMCID: PMC11430953 DOI: 10.3390/gels10090589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Drug delivery to the ocular system is affected by anatomical factors like the corneal epithelium, blinking reflex, aqueous blood barrier, and retinal blood barrier, which lead to quick removal from the site and inefficient drug delivery. Developing a drug delivery mechanism that targets specific eye tissue is a major hurdle for researchers. Our study examines the challenges of drug absorption in these pathways. Hydrogels have been researched as a suitable delivery method to overcome some obstacles. These are developed alone or in conjunction with other technologies, such as nanoparticles. Many polymer hydrogel nanoparticle systems utilizing both natural and synthetic polymers have been created and investigated; each has pros and cons. The complex release mechanism of encapsulated agents from hydrogel nanoparticles depends on three key factors: hydrogel matrix swelling, drug-matrix chemical interactions, and drug diffusion. This mechanism exists regardless of the type of polymer. This study provides an overview of the classification of hydrogels, release mechanisms, and the role of controlled release systems in pharmaceutical applications. Additionally, it highlights the integration of nanotechnology in ocular disease therapy, focusing on different types of nanoparticles, including nanosuspensions, nanoemulsions, and pharmaceutical nanoparticles. Finally, the review discusses current commercial formulations for ocular drug delivery and recent advancements in non-invasive techniques. The objective is to present a comprehensive overview of the possibilities for enhancing ocular medication delivery through hydrogel nanoparticle systems.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran
| | - Seungwon An
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Rohan Jaimin Shah
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Magi MS, Lopez-Vidal L, García MC, Stempin CC, Marin C, Maletto B, Palma SD, Real JP, Jimenez-Kairuz AF. Organic solvent-free benznidazole nanosuspension as an approach to a novel pediatric formulation for Chagas disease. Ther Deliv 2024; 15:699-716. [PMID: 39101355 DOI: 10.1080/20415990.2024.2380244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Aim: Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues.Methods: BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach. Physicochemical characterizations were conducted on both NS and lyophilized solid-state BNZ-nanocrystals (NC).Results: BNZ-NS exhibited particle size <500 nm, an acceptable polydispersity index (0.23), high Z-potential, and physical stability for at least 90 days. BNZ-NC showed tenfold higher solubility than pure BNZ. Dissolution assays revealed rapid BNZ-NS dissolution. BNZ-NC demonstrated biocompatibility on an eukaryotic cell and enhanced BNZ efficacy against trypomastigotes of Trypanosoma cruzi.Conclusion: BNZ-NS offers a promising alternative, overcoming limitations associated with BNZ for optimized pharmacotherapy.
Collapse
Affiliation(s)
- María Sol Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Lucía Lopez-Vidal
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Mónica Cristina García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Belkys Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Santiago Daniel Palma
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Juan Pablo Real
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Alvaro Federico Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
9
|
Nirbhavane P, Sharma G, Sharma R, Katare OP. Steroidal nanoformulations for the treatment of uveitis: potential, promises and future perspectives. Int Ophthalmol 2024; 44:58. [PMID: 38342799 DOI: 10.1007/s10792-024-03000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Intraocular inflammation, commonly referred to as uveitis, is a prevalent ocular disease. The categorization of uveitis may be based on the prevailing anatomical site, which includes anterior, intermediate, and posterior uveitis. There exists a significant body of evidence indicating that T cells play a pivotal role in the pathogenesis of autoimmune uveitis. In addition to the presence of T cells, an elevation in levels of inflammatory cytokines and a reduction in regulatory cytokines were also noted. The primary pharmacological interventions for uveitis comprise of corticosteroids, methotrexate, anti-vascular endothelial growth factor (VEGF) agents, anti-tumor necrosis factor-alpha (TNF-α) antibodies, and sirolimus. These medications offer prompt alleviation for inflammation. Nevertheless, prolonged administration of corticosteroids invariably leads to unfavorable adverse reactions. The traditional topical corticosteroids exhibit certain limitations, including inadequate transcorneal permeation and low corneal retention, leading to reduced ocular bioavailability. Consequently, there is a growing inclination towards the creation of innovative steroid drug delivery systems with the aim of reducing the potential for adverse effects, while simultaneously enhancing the drug's corneal permeation and retention. CONCLUSION This review is an attempt to compile all the research work done so far in this field and provides a brief overview of the global efforts to develop innovative nanocarrier-based systems for corticosteroids.
Collapse
Affiliation(s)
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rajeev Sharma
- Amity University, Gwalior, Madhya Pradesh, 474005, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
10
|
Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin Drug Deliv 2024; 21:211-227. [PMID: 38271023 DOI: 10.1080/17425247.2024.2311119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The intricate physiological barriers of the eye and the limited volume of eye drops impede efficient delivery of poorly water-soluble drugs. In the last decade, nanocrystals have emerged as versatile drug delivery systems in various administration routes from bench to bedside. The unique superiorities of nanocrystals, mainly embodied in high drug-loading capacity, good mucosal adhesion and penetration, and greatly improved drug solubility, reveal a promising prospect for ocular delivery of poorly water-soluble drugs. AREAS COVERED This article focuses on the ophthalmic nanocrystal technologies and products that are in the literature, clinical trials, and even on the market. The recent research progress in the preparation, ocular application, and absorption of nanocrystals are highlighted, and the pros and cons of nanocrystals in overcoming the physiological barriers of the eye are also summarized. EXPERT OPINION Nanocrystals have demonstrated success as glucocorticoid eye drops in the treatment of anterior segment diseases. However, the thermodynamic stability of nanocrystals remains the major challenge in product development. New technologies for efficiently optimizing stabilizers and sterilization processes are still expected. Strategies to confer more diverse functions via surface modification are also worth exploration to improve the potential of nanocrystals in delivering poorly water-soluble drugs to posterior segment of the eye.
Collapse
Affiliation(s)
- Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| |
Collapse
|
11
|
Almeida H, Silva AC. Nanoparticles in Ocular Drug Delivery Systems. Pharmaceutics 2023; 15:1675. [PMID: 37376123 DOI: 10.3390/pharmaceutics15061675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Conventional ophthalmic formulations lack a prolonged drug release effect and mucoadhesive properties, decreasing their residence time in the precorneal area and, therefore, in drug penetration across ocular tissues, presenting low bioavailability with a consequent reduction in therapeutic efficacy [...].
Collapse
Affiliation(s)
- Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| | - Ana Catarina Silva
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
12
|
Lopez-Vidal L, Paredes AJ, Palma SD, Real JP. Design and Development of Sublingual Printlets Containing Domperidone Nanocrystals Using 3D Melting Solidification Printing Process (MESO-PP). Pharmaceutics 2023; 15:pharmaceutics15051459. [PMID: 37242699 DOI: 10.3390/pharmaceutics15051459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Domperidone (DOM) is a drug commonly used to treat nausea and vomiting, as well as gastrointestinal disorders. However, its low solubility and extensive metabolism pose significant administration challenges. In this study, we aimed to improve DOM solubility and avoid its metabolism by developing nanocrystals (NC) of DOM through a 3D printing technology-melting solidification printing process (MESO-PP)-to be delivered via a solid dosage form (SDF) that can be administered sublingually. We obtained DOM-NCs using the wet milling process and designed an ultra-rapid release ink (composed of PEG 1500, propylene glycol, sodium starch glycolate, croscarmellose sodium, and sodium citrate) for the 3D printing process. The results demonstrated an increase in the saturation solubility of DOM in both water and simulated saliva without any physicochemical changes in the ink as observed by DSC, TGA, DRX, and FT-IR. The combination of nanotechnology and 3D printing technology enabled us to produce a rapidly disintegrating SDF with an improved drug-release profile. This study demonstrates the potential of developing sublingual dosage forms for drugs with low aqueous solubility using nanotechnology and 3D printing technology, providing a feasible solution to the challenges associated with the administration of drugs with low solubility and extensive metabolism in pharmacology.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| |
Collapse
|