1
|
Tarek M, El-Gogary RI, Kamel AO. A new era of psoriasis treatment: Drug repurposing through the lens of nanotechnology and machine learning. Int J Pharm 2025; 673:125385. [PMID: 39999900 DOI: 10.1016/j.ijpharm.2025.125385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Psoriasis is a persistent inflammatory skin disorder characterized by hyper-proliferation and abnormal epidermal differentiation. Conventional treatments such as; topical therapies, phototherapy, systemic immune modulators, and biologics aim to relieve symptoms and improve patient quality of life. However, challenges like adverse effects, high costs, and individual response variability persist. Thus, the need for novel anti-psoriatic drugs has led to the exploration of drug repurposing, an approach that identifies new applications for existing drugs. This method is in its early stages but has gained popularity across both public and private sectors. Furthermore, artificial intelligence (AI) integration is revolutionizing the healthcare industry by enhancing efficiency, delivery, and personalization. Machine learning and deep learning algorithms have significantly impacted drug discovery, repurposing, and designing new molecules or drug delivery carriers. Nanotechnology, in addition to AI, plays a pivotal role in targeting repurposed drugs via the topical route with suitable nanocarriers. This method overcomes challenges associated with oral delivery, such as systemic toxicities, slow onset of action, first-pass effect, and poor bioavailability. This review addresses the practice of repurposing existing drugs for managing psoriasis, discussing the challenges of conventional therapy and how the incorporation of nanotechnology and AI can overcome these hurdles, facilitating the discovery of anti-psoriatic drugs and presenting promising strategies for novel therapeutics. Additionally, it discusses the general benefits of drug repurposing compared to de novo drug development and the potential drawbacks of drug repurposing.
Collapse
Affiliation(s)
- Mahmoud Tarek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Thakur RK, Kumar A, Aggarwal K, Sood N, Khare S, Patel P, Das Kurmi B. A complete sojourn on nanotechnological advancements and nanocarrier applications in psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03804-w. [PMID: 39847054 DOI: 10.1007/s00210-025-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects. Among these, microneedles (MNs) emerge as an innovative transdermal delivery device offering controlled and sustained drug release, reduced systemic exposure, and painless, minimally invasive targeted drug delivery, making them highly suitable for managing skin-related immune disorders. Other transdermal techniques, such as sonophoresis, patches, iontophoresis, and electroporation, also play critical roles in psoriasis treatment. Nanotechnological approaches offer transformative solutions to overcome the limitations of traditional formulations by enhancing efficacy, reducing dosing frequency, and minimizing dose-dependent side effects. Various nanocarriers, including liposomes, ethosomes, transferosomes, niosomes, solid lipid nanoparticles (SLNs), liquid crystalline nanoparticles (LCNPs), nanoemulsions (NEs), and micelles, demonstrate significant potential to improve drug penetration, targeted distribution, safety, and efficacy. This review aims to comprehensively analyze the advancements in nanotechnological approaches and nanocarrier applications for psoriasis management. It discusses the types, pathophysiology, and history of psoriasis while exploring current treatment strategies, including herbal formulations and nanotechnology-based interventions. The review also evaluates the potential of nanotechnological advancements as innovative therapeutic options, emphasizing their mechanisms, benefits, and clinical applicability in addressing the shortcomings of conventional therapies. Together, these insights highlight nano-formulations as a promising frontier for effective psoriasis management.
Collapse
Affiliation(s)
- Ritik Kumar Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Aman Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kaushal Aggarwal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Nayan Sood
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Satyam Khare
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India.
| |
Collapse
|
3
|
Ashraf M, El-Sawy HS, El Zaafarany GM, Abdel-Mottaleb MMA. Eucalyptus oil nanoemulsion for enhanced skin deposition of fluticasone propionate in psoriatic plaques: A combinatorial anti-inflammatory effect to suppress implicated cytokines. Arch Pharm (Weinheim) 2024:e2400557. [PMID: 39449230 DOI: 10.1002/ardp.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects patients' quality of life. This study aimed to enhance the efficacy of topical application of fluticasone propionate (FP) using a eucalyptus oil-based nanoemulsion, an oil possessing anti-inflammatory activity and extracted from the leaves, fruits, and buds of Eucalyptus globulus or Eucalyptus maidenii, to improve the skin deposition of FP and aid its anti-inflammatory effect. Box-Behnken design was employed to optimize NE formulations, which were characterized for globule size, zeta potential, polydispersity index, rheological behavior, microscopic morphology, ex vivo skin permeation/deposition, and in vivo efficacy using imiquimod-induced psoriatic lesions. The optimized formulation depicted a droplet size of 188 ± 22.4 nm, a zeta potential of -17.63 ± 1.66 mV, and a viscosity of 204.9 mPa s. In addition to the increased FP retention in different skin layers caused by the NE and the reduced PASI score compared to the marketed cream, the levels of inflammatory cytokines IL-1α, IL-6, IL17a were markedly lowered, indicating the improved anti-psoriatic curable efficacy of the optimized formulation in comparison to the FP-marketed product.
Collapse
Affiliation(s)
- Mohamed Ashraf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Al-Kut University College, Kut, Wasit, Iraq
| | - Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Sharma H, Gupta N, Garg N, Dhankhar S, Chauhan S, Beniwal S, Saini D. Herbal Medicinal Nanoformulations for Psoriasis Treatment: Current State of Knowledge and Future Directions. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155273976231126141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2024]
Abstract
Background:Psoriasis is a persistent immune system disorder that influences the skin, leading to red, flaky patches that can be painful and irritated.Objective:Traditional treatments for psoriasis, such as topical creams and oral medications, may be effective but also have potential side effects. Herbal remedies have been used for centuries to treat skin conditions, and advancements in nanotechnology have led to the development of herbal nanoformulations that offer several advantages over traditional herbal remedies, such as efficacy, safety, and targeted delivery.Methods:The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar).Results:Several herbal nanoformulations, including those containing curcumin, aloe vera, and neem, have been shown to exhibit anti-inflammatory and immunomodulatory impacts, which will be useful within the treatment of psoriasis. However, more study is required to decide the efficacy and safety of these details, as well as the optimal dosing, duration of treatment, and potential side effects.Conclusion:Overall, herbal nanoformulations represent a promising area of research for the treatment of psoriasis, and may offer a safe and effective alternative or adjunct therapy to conventional treatments. This review article summarizes the present state of information for the herbal nanoformulations role in the treatment of psoriasis and their future perspectives.
Collapse
Affiliation(s)
- Himanshu Sharma
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Neha Gupta
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Suresh Beniwal
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamuna Nagar, Haryana, India
| | - Deepak Saini
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Chirilă L, Stan MS, Olaru S, Popescu A, Lite MC, Toma D, Voinea IC. Novel Collagen-Based Emulsions Embedded with Palmarosa Essential Oil, and Chamomile and Calendula Tinctures, for Skin-Friendly Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3867. [PMID: 39124531 PMCID: PMC11313595 DOI: 10.3390/ma17153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile structure from 100% cotton. The functionalized textile materials were characterized in terms of physicochemical, mechanical, antibacterial, and biocompatibility points of view. The pH values of the prepared emulsions were in the range of 4.81-5.23 and showed no significant differences after 4 h of storage. Moreover, the addition of a higher quantity of active principles (palmarosa essential oil and plant tinctures) caused slightly lower values of acidic pH. The electrical conductivity of the obtained emulsions increased with the decrease in the oil phases in the system. The highest values were obtained for the emulsion developed with the smallest volume fraction of active principle-palmarosa essential oil and plant tinctures. The emulsion that contained the least amount of collagen and the highest number of active principles exhibited the lowest stability. The textile materials treated with synthesized emulsions exerted antibacterial effects against S. aureus and E. coli strains and did not affect keratinocyte growth, spreading, and organization, highlighting the biocompatibility of these developed skin-friendly textiles.
Collapse
Affiliation(s)
- Laura Chirilă
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Sabina Olaru
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Alina Popescu
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Mihaela-Cristina Lite
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Doina Toma
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
6
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
7
|
Kamal RM, Sabry MM, El-Halawany AM, Rabie MA, El Sayed NS, Hifnawy MS, Younis IY. GC-MS analysis and the effect of topical application of essential oils of Pinus canariensis C.Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene aerial parts in Imiquimod-Induced Psoriasis in Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116947. [PMID: 37482262 DOI: 10.1016/j.jep.2023.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Coniferous plants, in particular Pinus and Cupressus species, have been used in the treatment of burns, skin infections, and immune-mediated inflammatory diseases such as psoriasis. AIM OF THE STUDY A comparative study between essential oils (EOs) extracted from aerial parts of three coniferous plants: Pinus canariensis C.Sm. (PC), Cupressus lusitanica Mill. (CL) and Cupressus arizonica Greene (CA), cultivated in Egypt, was designed to investigate their composition and their anti-psoriasis mechanism. MATERIALS AND METHODS The phytochemical profiles were confirmed using Gas Chromatography-Mass Spectrometry (GC-MS) method. In-vivo Imiquimod (IMQ)-induced psoriasis model was performed and EOs were applied topically and compared to mometasone cream as a standard subsequently histopathological analysis and inflammatory biomarkers were measured. RESULTS In GC-MS analysis, Monoterpene hydrocarbons, sesquiterpene hydrocarbons and oxygenated monoterpenes were the major detected classes in the three plants, except in Pinus canariensis essential oil, oxygenated monoterpenes were absent. A significant attenuation of imiquimod-induced psoriasis symptoms after topical application of P. canariensis C.Sm., and C. lusitanica Mill. essential oils were observed by reducing the psoriasis area severity index (PASI) score, alleviating histopathological alteration, restoring the spleen index, and decreasing serum levels of interleukins 23 and 17A. Indeed, the results of Pinus canariensis essential oil is comparable to mometasone and showed no significant difference from standard treatment. On the other hand, the topical application of C. arizonica essential oil failed to alleviate imiquimod-induced psoriasis symptoms as observed in the PSAI score, the histopathological investigation, and the spleen index. CONCLUSION The essential oils of P. canariensis C.Sm., and C. lusitanica Mill aerial parts could be promising candidates for psoriasis treatment and for further studies on inflammation-related skin diseases.
Collapse
Affiliation(s)
- Rania M Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|