1
|
Proshkina GM, Shramova EI, Mirkasyimov AB, Griaznova OY, Konovalova EV, Schulga AA, Deyev SM. The Barnase-Barstar-based pre-targeting strategy for enhanced antitumor therapy in vivo. Biochimie 2025; 228:158-166. [PMID: 39307408 DOI: 10.1016/j.biochi.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
There is a great need for novel approaches to the treatment of epithelial ovarian carcinoma, which is the leading cause of mortality from gynecological malignancies. In this study, the pre-targeting technology was used to enhance the in vivo targeting of cytotoxic module composed of nanoliposomes loaded with a truncated form of Pseudomonas aeruginosa exotoxin A (PE40) to cancer cells. Pre-targeting system used in this study is composed of bacterial ribonuclease Barnase and its natural antitoxin Barstar. Barstar, genetically fused to various engineered scaffold proteins specific to tumor-associated antigens (HER2, EpCAM) serves as a primary module for precise cancer cell recognition. Barnase conjugated to a therapeutic agent serves as a cytotoxic or secondary module for malignant cell elimination. Due to strong non-covalent interaction (KD10-14 M) of Barstar and Barnase, the primary and secondary modules efficiently interact with each other on the cell surface, which has been proven by confocal microscopy and flow cytometry. Using mice with SKOV-3 ovarian cancer xenografts, we have shown that regardless of the targeting module, the pre-targeting approach is much more effective than a single-step active targeting.
Collapse
Affiliation(s)
- G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - A B Mirkasyimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - O Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia; National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| |
Collapse
|
2
|
Shramova EI, Frolova AY, Serova EV, Deyev SM, Proshkina GM. A novel HER2-specific sensor based on DARPin_9-29 and albumin binding domain for real-time fluorescence-guided tumor detection in animal model of cancer. Biochem Biophys Res Commun 2024; 734:150747. [PMID: 39340925 DOI: 10.1016/j.bbrc.2024.150747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
In animal models of cancer, targeted fluorescence bioimaging, performed non-invasively and in real time, is indispensable tool for assessing tumor location, spread of metastasis, and the therapeutic potential of anticancer drugs under development. To overcome the limitation of antibodies in bioimaging applications, small artificial scaffold proteins based on ankyrin repeats (DARPins, designed ankyrin repeat proteins) are used as tumor-associated antigen binders. In this study for the first time, we assessed the potential of DARPin_9-29, the human epidermal growth factor receptor 2 (HER2) subdomain I-specific protein, genetically fused with albumin binding domain (ABD) and conjugated with Cyanine5.5 as a NIR sensor for fluorescence bioimaging of HER2-positive cancer in animal model. In vivo biodistribution studies have revealed sufficient tumor-to-background ratios at 48 h (3.17 ± 0.55) and 72 h (3.49 ± 0.64) postinjection, providing excellent contrast between the primary tumor and tissue background and allowing clear breast tumor detection. Ex vivo biodistribution has shown that ABD module in DARP-ABD sensor prevents renal reabsorption and increases tumor accumulation in more than 10-folds compared to excreting organs. To verify if DARP-ABD-Cy5.5 can demarcate HER2-positive tumor in vivo, HER2-positive syngeneic breast cancer cell line with constitutive gene expression of luciferase eFFLuc, was created. The powerful combination of bioluminescence and fluorescence imaging let to track the fluorescent anti-HER2 DARP-ABD sensor in bioluminescent HER2-positive breast tumors. Our results validate DARP-ABD as a promising sensor for fluorescence-guided imaging of HER2-positive solid cancer, which can be used in the development of improved anticancer treatment strategies.
Collapse
Affiliation(s)
- E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - A Yu Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - E V Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia; National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Iureva AM, Nikitin PI, Tereshina ED, Nikitin MP, Shipunova VO. The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: Comprehensive study. Eur J Pharm Biopharm 2024; 201:114366. [PMID: 38876361 DOI: 10.1016/j.ejpb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation. Here we investigate the effect of different polymer coatings of the surface on in vitro and in vivo properties of PLGA nanoparticles. Namely, cell binding efficiency, cytotoxicity, efficiency of fluorescent bioimaging, and tumor accumulation were tested. The highest binding efficiency in vitro and cytotoxicity were observed for positively charged polymers. Interestingly, in vivo fluorescent visualization of tumor-bearing mice and quantitative measurements of biodistribution of magnetite-loaded nanoparticles indicated different dependences of accumulation in tumors on the coating of PLGA nanoparticles. This means that nanoparticle surface properties can simultaneously enhance imaging efficiency and decrease quantitative accumulation in tumors. The obtained data demonstrate the complexity of the dependence of nanoparticles' effectiveness for theranostic applications on surface features. We believe that this study will contribute to the rational design of nanoparticles for effective cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Anna M Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Ekaterina D Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| |
Collapse
|
4
|
Kolesnikova OA, Komedchikova EN, Zvereva SD, Obozina AS, Dorozh OV, Afanasev I, Nikitin PI, Mochalova EN, Nikitin MP, Shipunova VO. Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment. Heliyon 2024; 10:e34211. [PMID: 39100472 PMCID: PMC11296017 DOI: 10.1016/j.heliyon.2024.e34211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Cancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.2 to 7.4. The extracellular pH values of tumors are characterized by a shift to a more acidic region in the range of 5.6-7.0 and represent a crucial target for enhancing nanoparticle delivery to cancer cells. Here we show the method of non-active protein incorporation into the surface of HER2-targeted nanoparticles to achieve optimal cellular uptake within the pH range of the tumor microenvironment. The method efficacy was confirmed in vitro and in vivo showing the maximum binding of nanoparticles to cells at a pH value 6.4. Namely, fluorescent magnetic nanoparticles, modified with HER2-recognising affibody ZHER2:342, with proven specificity in terms of HER2 recognition (with 62-fold higher cellular uptake compared to control nanoparticles) were designed for targeting cancer cells at slightly acidic pH values. The stabilizing protein, namely, bovine serum albumin, one of the major blood components with widespread availability and biocompatibility, was used for the decoration of the nanoparticle surface to alter the pH response of the targeting magnetic conjugates. The optimally designed nanoparticles showed a bell-shaped dependency of interaction with cancer cells in the pH range of 5.6-8.0 with maximum cellular uptake at pH value 6.4 close to that of the tumor microenvironment. In vivo experiments revealed that after i.v. administration, BSA-decorated nanoparticles exhibited 2 times higher accumulation in tumors compared to magnetic nanoparticles modified with affibody only. Thus, we demonstrated a valid method for enhancing the specificity of targeted nanoparticle delivery to cancer cells without changing the functional components of nanoparticles.
Collapse
Affiliation(s)
- Olga A. Kolesnikova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
| | - Elena N. Komedchikova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Svetlana D. Zvereva
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | | | - Olha V. Dorozh
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
| | - Iurii Afanasev
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991, Moscow, Russia
| | - Elizaveta N. Mochalova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Maxim P. Nikitin
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia
| |
Collapse
|
5
|
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release 2024; 365:317-330. [PMID: 37996056 DOI: 10.1016/j.jconrel.2023.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Developing combined cancer therapy strategies is of utmost importance as it can enhance treatment efficacy, overcome drug resistance, and ultimately improve patient outcomes by targeting multiple pathways and mechanisms involved in cancer growth and progression. Specifically, the potential of developing a combination chemo&photothermal therapy using targeted polymer nanoparticles as nanocarriers offers a promising approach for synergistic cancer treatment by combining the benefits of both therapies, such as targeted drug delivery and localized hyperthermia. Here, we report the first targeted anti-HER2 PLGA nanocarriers, called targosomes, that simultaneously possess photothermal, chemotherapeutic and diagnostic properties using only molecular payloads. Biocompatible poly(lactic-co-glycolic acid), PLGA, nanoparticles were loaded with photosensitizer phthalocyanine, diagnostic dye Nile Blue, and chemotherapeutic drug irinotecan, which was chosen as a result of screening a panel of theragnostic nanoparticles. The targeted delivery to cell surface oncomarker HER2 was ensured by nanoparticle modification with the anti-HER2 monoclonal antibody, trastuzumab, using the one-pot synthesis method without chemical conjugation. The irradiation tests revealed prominent photothermal properties of nanoparticles, namely heating by 35 °C in 10 min. Nanoparticles exhibited a 7-fold increase in binding and nearly an 18-fold increase in cytotoxicity for HER2-overexpressing cells compared to cells lacking HER2 expression. This enhancement of cytotoxicity was further amplified by >20-fold under NIR light irradiation. In vivo studies proved the efficacy of nanoparticles for bioimaging of primary tumor and metastasis sites and demonstrated 93% tumor growth inhibition, making these nanoparticles excellent candidates for translation into theragnostic applications.
Collapse
Affiliation(s)
- E N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - O A Kolesnikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - A V Syuy
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - V S Volkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - M P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - V O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia.
| |
Collapse
|
6
|
Kotelnikova PA, Shipunova VO, Deyev SM. Targeted PLGA-Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023; 16:9. [PMID: 38276487 PMCID: PMC10819332 DOI: 10.3390/pharmaceutics16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)-chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA-IR-780-NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
Collapse
Affiliation(s)
- Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Victoria O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Frolova AY, Kutyakov SV, Martynov VI, Deyev SM, Pakhomov AA. BODIPY Dye Derivative for Irreversible Fluorescent Labeling of Eukaryotic Cells and Their Simultaneous Cytometric Analysis. Acta Naturae 2023; 15:92-99. [PMID: 38234598 PMCID: PMC10790353 DOI: 10.32607/actanaturae.26879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 01/19/2024] Open
Abstract
In this work, we synthesized a green fluorescent dye derivative, 1,3,5,7-tetramethyl-BODIPY, with a heptyl substituent at the 8-position. The obtained highly hydrophobic compound was able to rapidly and irreversibly bind to eukaryotic cells. Incubation of cells with the dye over different periods of time or at different concentrations allowed us to control the degree of cell labeling and the level of fluorescence. This made it possible to modulate the fluorescence level of different eukaryotic cell cultures and then distinguish them by their level of fluorescence signal in the green channel in cytometric experiments. The labeled cells can be combined and further analyzed in the same test tube under identical conditions using the channels in which the dye does not fluoresce. This approach has been tested on a number of tumor cell cultures containing the HER2 receptor on their surface. The representation of the receptor in these cells was analyzed in one test tube in one run using a HER2-specific ligand based on the hybrid protein DARPin9_29-mCherry, which fluoresces in the red region of the spectrum.
Collapse
Affiliation(s)
- A. Yu. Frolova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - S. V. Kutyakov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. I. Martynov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - S. M. Deyev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. A. Pakhomov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
8
|
Kovalenko VL, Kolesnikova OA, Nikitin MP, Shipunova VO, Komedchikova EN. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. MICROMACHINES 2023; 14:1647. [PMID: 37630183 PMCID: PMC10458446 DOI: 10.3390/mi14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Photothermal therapy is one of the most promising and rapidly developing fields in modern oncology due to its high efficiency, localized action, and minimal invasiveness. Polymeric nanoparticles (NPs) incorporating low molecular-weight photothermal dyes are capable of delivering therapeutic agents to the tumor site, releasing them in a controlled manner, and providing tumor treatment under external light irradiation. The nanoparticle synthesis components are critically important factors that influence the therapeutically significant characteristics of polymeric NPs. Here, we show the impact of stabilizers and solvents used for synthesis on the properties of PLGA NPs for photothermal therapy. We synthesized PLGA nanocarriers using the microemulsion method and varied the nature of the solvent and the concentration of the stabilizer-namely, chitosan oligosaccharide lactate. A phthalocyanine-based photosensitizer, which absorbs light in the NIR window, was encapsulated in the PLGA NPs. When mQ water was used as a solvent and chitosan oligosaccharide lactate was used at a concentration of 1 g/L, the PLGA NPs exhibited highly promising photothermal properties. The final composite of the nanocarriers demonstrated photoinduced cytotoxicity against EMT6/P cells under NIR laser irradiation in vitro and was suitable for bioimaging.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| |
Collapse
|
9
|
Aitova A, Scherbina S, Berezhnoy A, Slotvitsky M, Tsvelaya V, Sergeeva T, Turchaninova E, Rybkina E, Bakumenko S, Sidorov I, Popov MA, Dontsov V, Agafonov EG, Efimov AE, Agapov I, Zybin D, Shumakov D, Agladze K. Novel Molecular Vehicle-Based Approach for Cardiac Cell Transplantation Leads to Rapid Electromechanical Graft-Host Coupling. Int J Mol Sci 2023; 24:10406. [PMID: 37373555 DOI: 10.3390/ijms241210406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate. On the other hand, the outer scaffold may hinder cell delivery, for example, making intramyocardial injection difficult. To resolve this contradiction, we developed molecular vehicles that combine a wrapped (rather than outer) polymer scaffold that is enveloped by the cell and provides excitability restoration (lost when cells were harvested) before engraftment. It also provides a coating with human fibronectin, which initiates the process of graft adhesion into the recipient tissue and can carry fluorescent markers for the external control of the non-invasive cell position. In this work, we used a type of scaffold that allowed us to use the advantages of a scaffold-free cell suspension for cell delivery. Fragmented nanofibers (0.85 µm ± 0.18 µm in diameter) with fluorescent labels were used, with solitary cells seeded on them. Cell implantation experiments were performed in vivo. The proposed molecular vehicles made it possible to establish rapid (30 min) electromechanical contact between excitable grafts and the recipient heart. Excitable grafts were visualized with optical mapping on a rat heart with Langendorff perfusion at a 0.72 ± 0.32 Hz heart rate. Thus, the pre-restored grafts' excitability (with the help of a wrapped polymer scaffold) allowed rapid electromechanical coupling with the recipient tissue. This information could provide a basis for the reduction of engraftment arrhythmias in the first days after cell therapy.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Serafima Scherbina
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Mikhail Slotvitsky
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Tatyana Sergeeva
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Elena Turchaninova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Elizaveta Rybkina
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Sergey Bakumenko
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Ilya Sidorov
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Mikhail A Popov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Vladislav Dontsov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Evgeniy G Agafonov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Anton E Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Schukinskaya St., 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Schukinskaya St., 123182 Moscow, Russia
| | - Dmitriy Zybin
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Dmitriy Shumakov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| |
Collapse
|