1
|
Dumka S, Panda C, Kumar S. Calcitriol reduces Newcastle disease virus replication by modulating galectin 3 and pro-inflammatory cytokines. Arch Virol 2024; 169:254. [PMID: 39601906 DOI: 10.1007/s00705-024-06183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
Calcitriol, or vitamin D (Vit D), is known for promoting strong bones and its ability to modulate inflammation and support the immune system. It has also been reported to be a potent antiviral agent, but the underlying mechanisms behind the mode of action are still unclear. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and causes infectious diseases in numerous avian species. In the present study, we explored the use of calcitriol as an antiviral agent against NDV infection. Post-treatment with calcitriol (the most active form of Vit D) was found to inhibit NDV replication in chicken embryo fibroblast cells (DF-1) in a time-of-addition- and concentration-dependent manner. The titer of NDV in allantoic fluid exhibited a substantial decrease after administration of cholecalciferol (the less active form of Vit D) to a 9-day-old chicken embryo. In addition, the results demonstrated a significant modulation of galectin 3 gene expression after NDV infection. Cytokine profiling of DF-1 cells treated with calcitriol and aloe-emodin, a known modulator of galectin 3, revealed significant upregulation of pro-inflammatory cytokines. The study indicates that calcitriol modulates host proteins, affecting NDV replication. These findings suggest that calcitriol or Vit D has the potential to be developed as an alternative antiviral drug against NDV, warranting further investigation.
Collapse
Affiliation(s)
- Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Chinmaya Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Livieratos A, Gogos C, Akinosoglou K. Beyond Antivirals: Alternative Therapies for Long COVID. Viruses 2024; 16:1795. [PMID: 39599909 PMCID: PMC11599064 DOI: 10.3390/v16111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Long COVID or Post-Acute Sequelae of SARS-CoV-2 infection (PASC) is a condition characterized by numerous lingering symptoms that persist for weeks to months following the viral illness. While treatment for PASC is still evolving, several therapeutic approaches beyond traditional antiviral therapies are being investigated, such as immune-modulating agents, anti-inflammatory drugs, and various supportive interventions focusing at alleviating symptoms and enhancing recovery. We aimed to summarize the breadth of available evidence, identify knowledge gaps, and highlight promising non-antiviral therapies for Long COVID/PASC. We followed the framework of a scoping methodology by mapping existing evidence from a range of studies, including randomized clinical trials, observational research, and case series. Treatments evaluated include metformin, low-dose naltrexone (LDN), dexamethasone, statins, omega-3 fatty acids, L-arginine, and emerging therapies like intravenous immunoglobulin (IVIg) and therapeutic apheresis. Early findings suggest that metformin has the strongest clinical evidence, particularly from large phase 3 trials, while LDN and dexamethasone show potential based on observational studies. However, many treatments lack robust, large-scale trials. This review emphasizes the need for further research to confirm the efficacy of these treatments and guide clinical practice for Long COVID management.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
3
|
Nguyen M, Aulick S, Kennedy C. Effectiveness of Vitamin D and Alpha-Lipoic Acid in COVID-19 Infection: A Literature Review. Cureus 2024; 16:e59153. [PMID: 38803740 PMCID: PMC11129797 DOI: 10.7759/cureus.59153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Over three years since the World Health Organization (WHO) declared COVID-19 a pandemic, it is still a global burden. Vaccines against COVID-19, caused by SARS-CoV-2, are available and effective for preventing disease. However, their protective effects are not 100%. Currently, the U.S. Food and Drug Administration (FDA) has only approved a limited number of inpatient treatments for COVID-19, such as remdesivir, baricitinib, and tocilizumab. These medications have indications and contraindications applicable to a select patient population. Finding additional effective therapies that are widely available with limited risk could be vital in optimizing treatment strategies for this viral illness. Some vitamins and supplements have been identified as potential options for managing COVID-19. Vitamin D (VD) deficiency has been associated with respiratory tract infections. Moreover, alpha-lipoic acid (ALA) is a powerful antioxidant and helps reduce inflammatory responses in many pathologic conditions. This review aims to analyze the current evidence regarding the effectiveness of VD and alpha-lipoic acid in COVID-19 infection in both outpatient and hospitalized patients. Relevant randomized controlled trials (RCTs) were identified via the PubMed database from January 1, 2021, to December 31, 2023. Inclusion criteria were as follows: the study design was a randomized controlled trial (RCT), the usage of a constant dose during the intervention period without any additional boluses, and a research ethics committee approved it. Exclusion criteria included a lack of an outcome or apparent intervention, additional boluses, or a single-dose regimen in all the interventional groups. There were 11 studies with a total sample size of 35,717 patients that met the criteria for this review. A total of 10 RCTs examined the efficacy of VD, and one RCT that reviewed the efficacy of ALA was identified. All of the articles investigated the use of VD or ALA during the treatment of COVID-19. The endpoints of each study varied, including length of stay in hospital, viral load, SARS-CoV-2 infection rate, mechanical ventilation, inflammatory markers, clinical symptoms, Sequential Organ Failure Assessment (SOFA) score, and mortality. In 8/10 VD supplementation trials, significant differences were identified between the interventional and placebo groups in the aforementioned parameters. In 2/10 VD supplementation trials, no significant differences were identified. The ALA supplementation RCT found no differences between the interventional and placebo groups in the SOFA score and 30-day all-cause mortality rate. The current literature suggests that VD can potentially reduce the SARS-CoV-2 infection rate, oxygen requirements, inflammatory markers, clinical symptoms, and mortality. Regarding ALA, although there was a suggestion of benefit, it was not statistically significant. Common limitations among the different studies included relatively small sample sizes, different geographical patient locations among studies, and differences in dosages. Trials investigating the effects of higher doses of VD supplementation on SARS-CoV-2 infection should be conducted. More research is needed to define best practices and optimal dosing protocols for the use of VD in COVID-19.
Collapse
Affiliation(s)
- Martin Nguyen
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Samuel Aulick
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Christopher Kennedy
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| |
Collapse
|
4
|
Giri-Rachman EA, Effendy VV, Azmi MHS, Yamahoki N, Stephanie R, Agustiyanti DF, Wisnuwardhani PH, Angelina M, Rubiyana Y, Aditama R, Ningrum RA, Wardiana A, Fibriani A. The SARS-CoV-2 M pro Dimer-Based Screening System: A Synthetic Biology Tool for Identifying Compounds with Dimerization Inhibitory Potential. ACS Synth Biol 2024; 13:509-520. [PMID: 38316139 PMCID: PMC10877612 DOI: 10.1021/acssynbio.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
The COVID-19 endemic remains a global concern. The search for effective antiviral candidates is still needed to reduce disease risk. However, the availability of high biosafety level laboratory facilities for drug screening is limited in number. To address this issue, a screening system that could be utilized at lower biosafety levels remains essential. This study aimed to develop a novel SARS-CoV-2 main protease (Mpro) dimer-based screening system (DBSS) utilizing synthetic biology in Escherichia coli BL21(DE3). We linked the SARS-CoV-2 Mpro with the DNA-binding domain of AraC regulatory protein, which regulates the reporter gene expression. Protein modeling and molecular docking showed that saquinavir could bind to AraC-Mpro both in its monomer and dimer forms. The constructed DBSS assay indicated the screening system could detect saquinavir inhibitory activity at a concentration range of 4-10 μg/mL compared to the untreated control (P ≤ 0.05). The Vero E6 cell assay validated the DBSS result that saquinavir at 4-10 μg/mL exhibited antiviral activity against SARS-CoV-2. Our DBSS could be used for preliminary screening of numerous drug candidates that possess a dimerization inhibitor activity of SARS-CoV-2 Mpro and also minimize the use of a high biosafety level laboratory.
Collapse
Affiliation(s)
| | - Vergio V. Effendy
- School
of Life Sciences and Technology, Institut
Teknologi Bandung, Bandung 40132, Indonesia
| | - Muhammad H. S. Azmi
- School
of Life Sciences and Technology, Institut
Teknologi Bandung, Bandung 40132, Indonesia
| | - Nicholas Yamahoki
- School
of Life Sciences and Technology, Institut
Teknologi Bandung, Bandung 40132, Indonesia
| | - Rebecca Stephanie
- School
of Life Sciences and Technology, Institut
Teknologi Bandung, Bandung 40132, Indonesia
| | - Dian F. Agustiyanti
- Research
Center for Genetic Engineering, Indonesian
National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Popi H. Wisnuwardhani
- Research
Center for Genetic Engineering, Indonesian
National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Marissa Angelina
- Research
Center for Pharmaceutical Ingredients and Traditional Medicine, Indonesian National Research and Innovation Agency
(BRIN), Serpong 15314, Indonesia
| | - Yana Rubiyana
- Research
Center for Genetic Engineering, Indonesian
National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Reza Aditama
- Biochemistry
Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Ratih A. Ningrum
- Research
Center for Genetic Engineering, Indonesian
National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Andri Wardiana
- Research
Center for Genetic Engineering, Indonesian
National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Azzania Fibriani
- School
of Life Sciences and Technology, Institut
Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
5
|
Stannard H, Koszalka P, Deshpande N, Desjardins Y, Baz M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023; 15:2447. [PMID: 38140688 PMCID: PMC10747412 DOI: 10.3390/v15122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.
Collapse
Affiliation(s)
- Harry Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Centre Nutrition, Santé et Societé (NUTRISS) Center, Faculté de Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Quebec City, QC G1V 4L3, Canada
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Campolina-Silva G, Andrade ACDSP, Couto M, Bittencourt-Silva PG, Queiroz-Junior CM, Lacerda LDSB, Chaves IDM, de Oliveira LC, Marim FM, Oliveira CA, da Silva GSF, Teixeira MM, Costa VV. Dietary Vitamin D Mitigates Coronavirus-Induced Lung Inflammation and Damage in Mice. Viruses 2023; 15:2434. [PMID: 38140675 PMCID: PMC10748145 DOI: 10.3390/v15122434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 (β-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying β-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1β, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates β-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.
Collapse
Affiliation(s)
- Gabriel Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Ana Cláudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Manoela Couto
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Paloma G. Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Larisse de Souza B. Lacerda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Leonardo C. de Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| |
Collapse
|
7
|
Fibriani A, Taharuddin AAP, Yamahoki N, Stephanie R, Laurelia J, Agustiyanti DF, Wisnuwardhani PH, Angelina M, Rubiyana Y, Ningrum RA, Wardiana A, Desriani D, Iskandar F, Permatasari FA, Giri-Rachman EA. Porphyrin-derived carbon dots for an enhanced antiviral activity targeting the CTD of SARS-CoV-2 nucleocapsid. J Genet Eng Biotechnol 2023; 21:93. [PMID: 37801271 PMCID: PMC10558421 DOI: 10.1186/s43141-023-00548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Since effective antiviral drugs for COVID-19 are still limited in number, the exploration of compounds that have antiviral activity against SARS-CoV-2 is in high demand. Porphyrin is potentially developed as a COVID-19 antiviral drug. However, its low solubility in water restricts its clinical application. Reconstruction of porphyrin into carbon dots is expected to possess better solubility and bioavailability as well as lower biotoxicity. METHODS AND RESULTS In this study, we investigated the antiviral activity of porphyrin and porphyrin-derived carbon dots against SARS-CoV-2. Through the in silico analysis and assessment using a novel drug screening platform, namely dimer-based screening system, we demonstrated the capability of the antivirus candidates in inhibiting the dimerization of the C-terminal domain of SARS-CoV-2 Nucleocapsid. It was shown that porphyrin-derived carbon dots possessed lower cytotoxicity on Vero E6 cells than porphyrin. Furthermore, we also assessed their antiviral activity on the SARS-CoV-2-infected Vero E6 cells. The transformation of porphyrin into carbon dots substantially augmented its performance in disrupting SARS-CoV-2 propagation in vitro. CONCLUSIONS Therefore, this study comprehensively demonstrated the potential of porphyrin-derived carbon dots to be developed further as a promisingly safe and effective COVID-19 antiviral drug.
Collapse
Affiliation(s)
- Azzania Fibriani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | | | - Nicholas Yamahoki
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Rebecca Stephanie
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Jessica Laurelia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dian Fitria Agustiyanti
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Popi Hadi Wisnuwardhani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, Indonesian National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Yana Rubiyana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Andri Wardiana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Desriani Desriani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ferry Iskandar
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
| | - Fitri Aulia Permatasari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Ernawati Arifin Giri-Rachman
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|