1
|
Aytar EC, Sarı ZB, Sarı ME, Durmaz A, Torunoğlu EI, Gümrükçüoğlu A, Demirel G. Anticancer potential of Bellardia trixago quantum dots: Cytotoxic effects on various cancer cell lines. Bioorg Chem 2025; 158:108340. [PMID: 40073593 DOI: 10.1016/j.bioorg.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
This study investigates the synthesis, characterization, and anticancer effects of carbon quantum dots (CQDs) derived from Bellardia trixago. The CQDs were analyzed using Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). TEM results revealed that the CQDs have a spherical morphology and exhibit a layered structure. XRD analysis showed a graphite-like crystalline structure, while FTIR and XPS studies confirmed the presence of OH, CC, and CO functional groups on the surface. The biological activity of CQDs demonstrated selective cytotoxicity, inducing significant cell death in cancer cells while exhibiting low toxicity in healthy cells. More pronounced morphological changes were observed in HEp-2 and SaOS-2 cells, while HEK-293 cells showed negligible changes. These findings suggest that quantum dots could serve as a potential alternative for cancer treatment.
Collapse
Affiliation(s)
- Erdi Can Aytar
- Usak University Faculty of Agriculture Department of Horticulture, 64200 Uşak, Turkey.
| | - Zeynep Betul Sarı
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Basic Medical Sciences, Medical Biology, 06010 Ankara, Turkey
| | - Muhammet Emin Sarı
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biology, 42090 Konya, Turkey
| | - Alper Durmaz
- Artvin Coruh University, Ali Nihat Gok Yigit Botanical Garden Application and Research Center, 08000 Artvin, Turkey
| | - Emine Incilay Torunoğlu
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biochemistry, 42090 Konya, Turkey
| | - Abidin Gümrükçüoğlu
- Artvin Çoruh University, Medicinal-Aromatic Plants Application and Research Center, 08000 Artvin, Turkey
| | - Gamze Demirel
- Selçuk University - Akşehir Kadir Yallagöz School of Health - Department of Nutrition and Dietetics, 42560 Konya, Turkey
| |
Collapse
|
2
|
G P, Singh M, Gupta PK, Shukla R. Synergy of Microfluidics and Nanomaterials: A Revolutionary Approach for Cancer Management. ACS APPLIED BIO MATERIALS 2025; 8:2716-2734. [PMID: 40100776 DOI: 10.1021/acsabm.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cancer affects millions of individuals every year and is the second most common cause of death. Various therapeutic strategies are explored for the management of cancer including radiation therapy and chemotherapy with or without surgical procedures. However, the drawbacks like poor cancer cell targeting and higher toxicity for healthy cells need the advancement of the therapeutic strategy. The exploration of nanomedicine achieves targeted distribution, and the adoption of microfluidics technology for the preparation of the nanoparticulate system has enhanced the efficacy and uniformity of the nanocarriers. The overview of the existing designs of the microfluidics device assisted in the preparation of the nanoparticles, and various nanodelivery systems formulated using the microfluidic device including liposomes, lipidic nanocarriers, quantum dots, polymeric nanoparticles, and metallic nanocarriers are discussed in this review. Further, the challenges associated with the fabrication of the microfluidics device and the fabrication of microfluidics device-based nanoparticles are detailed here.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Mansi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Bio-Science and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
3
|
Zhou Y, Camisasca A, Dominguez-Gil S, Bartkowski M, Rochfort KD, Piletti M, White A, Krizsan D, O'Connor R, Quinn SJ, Iacopino D, Eustace AJ, Giordani S. Synthesis of carbon dots from spent coffee grounds: transforming waste into potential biomedical tools. NANOSCALE 2025; 17:9947-9962. [PMID: 40067158 DOI: 10.1039/d4nr05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Carbon dots (CDs) are small-sized, spherical nanoparticles presenting amorphous carbon cores with nanocrystalline regions of a graphitic structure. They show unique properties such as high aqueous solubility, robust chemical inertness, and non-toxicity and can be manufactured at a relatively low cost. They are also well known for outstanding fluorescence tunability and resistance to photobleaching. Together, these properties boost their potential to act as drug delivery systems (DDSs). This work presents a low-cost synthesis of CDs by upcycling spent coffee grounds (SCGs) and transforming them into value-added products. This synthetic route eliminates the use of highly toxic heavy metals, high energy-consuming reactions and long reaction times, which can improve biocompatibility while benefiting the environment. A series of physico-chemical characterisation techniques demonstrated that these SCG-derived CDs are small-sized nanoparticles with tunable fluorescence. In vitro studies with 120 h of incubation of SCG-derived CDs demonstrated their specific antiproliferative effect on the breast cancer CAL-51 cell line, accompanied by increased reactive oxygen species (ROS) production. Importantly, no impact was observed on healthy breast, kidney, and liver cells. Confocal laser scanning microscopy confirmed the intracellular accumulation of SCG-derived CDs. Furthermore, the drug efflux pumps P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP) did not impact CD accumulation in the cancer cells.
Collapse
Affiliation(s)
- Yingru Zhou
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Adalberto Camisasca
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Sofia Dominguez-Gil
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Michał Bartkowski
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Keith D Rochfort
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Martina Piletti
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Anita White
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Dorottya Krizsan
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Robert O'Connor
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Daniela Iacopino
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Alex J Eustace
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
4
|
Alibrahem W, Helu NK, Oláh C, Prokisch J. Potential of Carbon Nanodots (CNDs) in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:560. [PMID: 40214605 PMCID: PMC11990490 DOI: 10.3390/nano15070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Carbon Nanodots (CNDs) are characterized by their nanoscale size (<10 nm), biocompatibility, stability, fluorescence, and photoluminescence, making them a promising candidate for cancer therapy. The difference in the methods of synthesis of CNDs, whether top-down or bottom-up, affects the formation, visual, and surface characteristics of CNDs, which are crucial for their biomedical and pharmaceutical applications. The urgent need for innovative therapeutic strategies from CNDs is due to the limitations and barriers posed by conventional therapies including drug resistance and cytotoxicity. Nano-loaded chemotherapy treatments are highly effective and can enhance the solubility and targeted delivery of chemotherapeutic agents, generate reactive oxygen species (ROS) to induce cancer cell cytotoxicity, and regulate intracellular signaling pathways. Their ability to be designed for cellular uptake and exact intracellular localization further improves their therapeutic potential. In addition to working on drug delivery, CNDs are highlighted for their dual functionality in imaging and therapy, which allows real-time observing of treatment efficacy. Despite the development of these treatments and the promising results for the future, challenges still exist in cancer treatment.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2025; 12:673-693. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
6
|
Debnath R, Ikbal AMA, Ravi NK, Kargarzadeh H, Palit P, Thomas S. Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals. Polymers (Basel) 2025; 17:365. [PMID: 39940566 PMCID: PMC11819804 DOI: 10.3390/polym17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon nanodots (CNDs) have garnered significant attention as viable drug delivery vehicles in recent years, especially in the field of phytomedicine. Although there is much promise for therapeutic applications with phytomedicine, its effectiveness is frequently restricted by its low solubility, stability, and bioavailability. This paper offers a thorough synopsis of the developing field of phytomedicine drug delivery based on CND. It explores CND synthesis processes, surface functionalization strategies, and structural and optical characteristics. Additionally, the advantages and difficulties of phytomedicine are examined, with a focus on the contribution of drug delivery methods to the increased effectiveness of phytomedicine. The applications of CNDs in drug delivery are also included in the review, along with the mechanisms that underlie their improved drug delivery capabilities. Additionally, it looks at controlled-release methods, stability augmentation, and phytomedicine-loading tactics onto CNDs. The potential of polymeric carbon nanodots in drug delivery is also covered, along with difficulties and prospective directions going forward, such as resolving toxicity and biocompatibility issues. In summary, the present review highlights the encouraging contribution of CNDs to the field of drug delivery, specifically in enhancing the potential of phytomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Rabin Debnath
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Neeraj Kr. Ravi
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International, Inter University Centre for Nanoscience and Nantechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686560, India
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg P.O. Box 17011, South Africa
- TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd., Sreekariyam, Trivandrum 695016, India
| |
Collapse
|
7
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
8
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024; 7:8126-8148. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Wang Y, Hou X, Li Y, Sun X, Hu R, Lv Y, Jia R, Ding L. (B, N)-codoped carbon dots for sensitive luteolin detection and HepG2 cell imaging. Microchem J 2024; 206:111562. [DOI: 10.1016/j.microc.2024.111562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Pal S, Mondal R, Das PK. Nanogel-Carbon Dot Conjugates: A Synergistic Approach for Enhanced Cancer Treatment through Combination Therapy. ACS Med Chem Lett 2024; 15:1668-1676. [PMID: 39411533 PMCID: PMC11472383 DOI: 10.1021/acsmedchemlett.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
The present study reports the development of a novel nanoconjugate, NG-FACD, comprising a positively charged self-assembled nanogel (NG) derived from a peptide amphiphilic hydrogelator and a negatively charged folic acid-functionalized blue-emitting carbon dot (FACD), bound via electrostatic interactions. NG-FACD was developed to combine the advantages of the individual nanocarriers and overcome their drawbacks. The presence of folic acid enables NG-FACD to be successfully used in selective bioimaging and targeted combination therapy against folate receptor-positive (FR+) B16F10 over FR- cells. NG-FACD demonstrated improved riboflavin (RbF) and paclitaxel (PTX) loading compared to individual nanocarriers that made it ∼1.8- and 1.5-fold more cytotoxic toward FR+ B16F10 cells over RbF- and PTX-loaded individual nanocarriers. The concurrent presence of RbF and PTX on NG-FACD displayed ∼1.9-2.8-fold higher cytotoxicity than single drug-loaded individual nanocarriers and ∼3-4.5-fold higher cytotoxicity through RbF-mediated photodynamic therapy and PTX-induced chemotherapy in synergy compared to free drugs against FR+ B16F10 cells.
Collapse
Affiliation(s)
- Sudeshna Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajarshi Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
12
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Jin N, Wang Z, Yin C, Bu W, Jin N, Ou L, Xie W, He J, Lai X, Shao L. Novel Carbon Quantum Dots Precisely Trigger Ferroptosis in Cancer Cells through Antioxidant Inhibition Synergistic Nanocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37456-37467. [PMID: 39007694 DOI: 10.1021/acsami.4c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High levels of glutathione (GSH) are an important characteristic of malignant tumors and a significant cause of ineffective treatment and multidrug resistance. Although reactive oxygen species (ROS) therapy has been shown to induce tumor cell death, the strong clearance effect of GSH on ROS significantly reduces its therapeutic efficacy. Therefore, there is a need to develop new strategies for targeting GSH. In this study, novel carbon quantum dots derived from gentamycin (GM-CQDs) were designed and synthesized. On the basis of the results obtained, GM-CQDs contain sp2 and sp3 carbon atoms as well as nitrogen oxygen groups, which decrease the intracellular levels of GSH by downregulating SLC7A11, thereby disrupting redox balance, mediating lipid peroxidation, and inducing ferroptosis. Transcriptome analysis demonstrated that GM-CQDs downregulated the expression of molecules related to GSH metabolism while significantly increasing the expression of molecules related to ferroptosis. The in vivo results showed that the GM-CQDs exhibited excellent antitumor activity and immune activation ability. Furthermore, because of their ideal biological safety, GM-CQDs are highly promising for application as drugs targeting GSH in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nianqiang Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110002, People's Republic of China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Chengcheng Yin
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, People's Republic of China
- School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Wenhuan Bu
- School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Nuo Jin
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Lingling Ou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Wenqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Jiankang He
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| |
Collapse
|
14
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
15
|
Zhou Y, Duan HL, Tan KJ, Dong L. One-step solvothermal synthesis of full-color fluorescent carbon dots for information encryption and anti-counterfeiting applications. NANOSCALE 2024; 16:11642-11650. [PMID: 38847559 DOI: 10.1039/d4nr01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multicolor fluorescent carbon dots (CDs) have received extensive attention due to their excellent fluorescence tunable performance. In this study, multicolor CDs with color tunable and high fluorescence quantum yields (QYs) were successfully prepared under the same conditions by a one-step solvothermal method using 2-aminoterephthalic acid (ATA) and Nile Blue A (NBA) as reaction reagents, achieving a wide color field coverage. Detailed studies on the relevant mechanisms have been carried out for blue, green and red CDs, indicating that the regulating mechanism of multicolor luminescence is determined by the size of the sp2 conjugated domains, which is due to the increase of particle size that causes an increase in the size of the sp2 conjugated domains, resulting in the narrowing of the band gap and the red-shift of the emission wavelength. It was found that the CDs have the advantages of simple preparation, high photostability and high quantum yield. They were used as fluorescent ink and mixed with polyvinyl alcohol (PVA) to form CD/PVA composites, which were successfully applied in the field of information encryption and anti-counterfeiting. This work provides a new strategy for the synthesis of panchromatic tunable fluorescent CDs and their application in the field of information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hai-Lin Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ke-Jun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
16
|
Zarepour A, Khosravi A, Yücel Ayten N, Çakır Hatır P, Iravani S, Zarrabi A. Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies. J Mater Chem B 2024; 12:4307-4334. [PMID: 38595268 DOI: 10.1039/d4tb00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Graphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Necla Yücel Ayten
- Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Pınar Çakır Hatır
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
17
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
18
|
Omidian H, Wilson RL, Cubeddu LX. Quantum Dot Research in Breast Cancer: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2152. [PMID: 38730959 PMCID: PMC11085412 DOI: 10.3390/ma17092152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The multifaceted role of quantum dots (QDs) in breast cancer research highlights significant advancements in diagnostics, targeted therapy, and drug delivery systems. This comprehensive review addresses the development of precise imaging techniques for early cancer detection and the use of QDs in enhancing the specificity of therapeutic delivery, particularly in challenging cases like triple-negative breast cancer (TNBC). The paper also discusses the critical understanding of QDs' interactions with cancer cells, offering insights into their potential for inducing cytotoxic effects and facilitating gene therapy. Limitations such as biocompatibility, toxicity concerns, and the transition from laboratory to clinical practice are critically analyzed. Future directions emphasize safer, non-toxic QD development, improved targeting mechanisms, and the integration of QDs into personalized medicine, aiming to overcome the current challenges and enhance breast cancer management.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (L.X.C.)
| | | | | |
Collapse
|
19
|
Gao F, Liu J, Tang Q, Jiang Y. The Guidelines for the Design and Synthesis of Transition Metal Atom Doped Carbon Dots. Chembiochem 2024; 25:e202300485. [PMID: 38103035 DOI: 10.1002/cbic.202300485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Atoms doping is a practical approach to modulate the physicochemical properties of carbon dots (CDs) and thus has garnered increasing attention in recent years. Compared to non-metal atoms, transition metal atoms (TMAs) possess more unoccupied orbitals and larger atomic radii. TMAs doping can significantly alter the electronic structure of CDs and bestow them with new intrinsic characteristics. TMAs-doped CDs have exhibited widespread application potential as a new class of single-atom-based nanomaterials. However, challenges remain for the successful preparation and precise design of TMAs-doped CDs. The key to successfully preparing TMA-doped CDs lies in anchoring TMAs to the carbon precursors before the reaction. Herein, taking the formation mechanism of TMAs-doped CDs as a starting point, we systematically summarized the ligands employed for synthesizing TMAs-doped CDs and proposed the synthetic strategy involving multiple ligands. Additionally, we summarize the functional properties imparted to CDs by different TMA dopants to guide the design of TMA-doped CDs with different functional characteristics. Finally, we describe the bottlenecks TMAs-doped CDs face and provide an outlook on their future development.
Collapse
Affiliation(s)
- Fucheng Gao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Jiamei Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yanyan Jiang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| |
Collapse
|
20
|
Ansari MA, Shoaib S, Chauhan W, Gahtani RM, Hani U, Alomary MN, Alasiri G, Ahmed N, Jahan R, Yusuf N, Islam N. Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. ENVIRONMENTAL RESEARCH 2024; 241:117522. [PMID: 37967707 DOI: 10.1016/j.envres.2023.117522] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC 27710, USA
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, Collage of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Nabeel Ahmed
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
21
|
Stan CS, Elouakassi N, Albu C, Conchi AO, Coroaba A, Ursu LE, Popa M, Kaddami H, Almaggoussi A. Photoluminescence of Argan-Waste-Derived Carbon Nanodots Embedded in Polymer Matrices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:83. [PMID: 38202538 PMCID: PMC10780386 DOI: 10.3390/nano14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this work, photoluminescent (PL) carbon nano dots (CNDs) prepared from argan waste were embedded in highly optical transparent poly(styrene-co-acrylonitrile) (PSA) and cyclo-olefin copolymer (COC) matrices, which were further processed into thin films. In the first step, the luminescent CNDs were prepared through thermal processing of fine-groundargan waste, followed, in the second step, by direct dispersion in the polymer solutions, obtained by solving PSA and COC in selected solvents. These two polymer matrices were selected due to their high optical transparency, resilience to various environmental factors, and ability to be processed as quality thin films. The structural configuration of the CNDs was investigated through EDX, XPS, and FTIR, while DLS, HR-SEM, and STEM were used for their morphology investigation. The luminescence of the prepared CNDs and resulted polymer nanocomposites was thoroughly investigated through steady-state, absolute PLQY, and lifetime fluorescence. The quality of the resulted CND-polymer nanocomposite thin films was evaluated through AFM. The prepared highly luminescent thin films with a PL conversion efficiency of 30% are intended to be applied as outer photonic conversion layers on solar PV cells for increasing their conversion efficiency through valorization of the UV component of the solar radiation.
Collapse
Affiliation(s)
- Corneliu S. Stan
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University of Iasi, D. Mangeron 73 Ave., 700050 Iasi, Romania;
| | - Noumane Elouakassi
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Faculty of Science and Technology, Cadi Ayyad University, Av. Abdelkrim Khattabi, B.P. 511, Marrakech 40000, Morocco; (N.E.); (H.K.); (A.A.)
| | - Cristina Albu
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University of Iasi, D. Mangeron 73 Ave., 700050 Iasi, Romania;
| | - Ania O. Conchi
- Conditions Extremes Matériaux Haute Temperature et Irradiation (CEMHTI), UPR 3079, CNRS, Université d’Orléans, 45100 Orleans, France;
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda 41A Alley, 700487 Iasi, Romania; (A.C.); (L.E.U.)
| | - Laura E. Ursu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda 41A Alley, 700487 Iasi, Romania; (A.C.); (L.E.U.)
| | - Marcel Popa
- Faculty of Chemical Engineering and Environmental Protection, Gh. Asachi Technical University of Iasi, D. Mangeron 73 Ave., 700050 Iasi, Romania;
- Academy of Romanian Scientists, Ilfov Street, 050054 Bucharest, Romania
| | - Hamid Kaddami
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Faculty of Science and Technology, Cadi Ayyad University, Av. Abdelkrim Khattabi, B.P. 511, Marrakech 40000, Morocco; (N.E.); (H.K.); (A.A.)
- Sustainable Materials Research Center (SusMat-RC), Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdemaji Almaggoussi
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Faculty of Science and Technology, Cadi Ayyad University, Av. Abdelkrim Khattabi, B.P. 511, Marrakech 40000, Morocco; (N.E.); (H.K.); (A.A.)
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE), Advanced Organic Optoelectronic Laboratory, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
22
|
Joshi H, Gupta DS, Kaur G, Singh T, Ramniwas S, Sak K, Aggarwal D, Chhabra RS, Gupta M, Saini AK, Tuli HS. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3443-3458. [PMID: 37490121 DOI: 10.1007/s00210-023-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | | | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | | | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
- Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
23
|
Bao H, Liu Y, Li H, Qi W, Sun K. Luminescence of carbon quantum dots and their application in biochemistry. Heliyon 2023; 9:e20317. [PMID: 37790961 PMCID: PMC10543222 DOI: 10.1016/j.heliyon.2023.e20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Similar to fullerenes, carbon nanotubes and graphene, carbon dots (CDs) are causing a lot of research work in their own right. CDs are a type of surface-passivated quantum dot that contain carbon atoms. Their distinctive characteristics, such as luminescent emission that varies with size and wavelength, resistance to photobleaching, easy biological binding, lack of toxicity, and economical production without the need for intricate synthetic processes, have led to a noteworthy surge in attention within the research community. Different techniques can be utilized to create these CDs, spanning from basic candle burning to laser ablation. This review article delves into the principles of fluorescence technology, providing insights into how different synthesis methods of quantum dots impact their luminescent properties. Additionally, it highlights the latest applications of quantum dots in catalysis and biomedical fields, with special emphasis on the current status of luminescent properties in biology and chemistry. Towards the end, the article discusses the limitations of quantum dots in current practical applications, pointing out that CDs hold promising potential for future applications.
Collapse
Affiliation(s)
- Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - He Li
- Beijing University of Chemical Technology, Beijing, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Keyan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
24
|
Du F, Yang LP, Wang LL. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. J Mater Chem B 2023; 11:8117-8135. [PMID: 37555267 DOI: 10.1039/d3tb01329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, carbon dots (CDs) as newly developed carbon-based nanomaterials due to advantages such as excellent photostability and easy surface functionalization have generated wide application prospects in fields such as biological imaging and chemical sensing. The multicolor emission carbon dots (M-CDs) were acquired through the selection of different carbon source precursors, change of synthesis conditions and synthesis environment. Therefore, the aim of this review is to summarize the latest research progress in polychromatic CDs from the perspectives of synthesis strategies, luminescent mechanisms, luminescent properties and applications. This review focuses on how to prepare MCDs by changing raw materials and synthesis conditions such as reaction temperature, synthesis time, synthesis pH, and synthesis solvent. This review also presents the optical properties of MCDs, concentration effects, solvent effects, pH effects, elemental doping, and surface passivation on them, as well as their creative applications in the field of sensing applications. It is anticipated that this review will serve as a guide for the development of multifunctional M-CDs and inspire future research on controllable design and preparation of M-CDs.
Collapse
Affiliation(s)
- Fangfang Du
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Liu-Pan Yang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Li Wang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
25
|
Anpalagan K, Karakkat JV, Jelinek R, Kadamannil NN, Zhang T, Cole I, Nurgali K, Yin H, Lai DTH. A Green Synthesis Route to Derive Carbon Quantum Dots for Bioimaging Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2103. [PMID: 37513114 PMCID: PMC10385789 DOI: 10.3390/nano13142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method.
Collapse
Affiliation(s)
- Karthiga Anpalagan
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| | | | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Nila Nandha Kadamannil
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Tian Zhang
- Department of Chemical and Biological Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kulmira Nurgali
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| | - Hong Yin
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Daniel T H Lai
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| |
Collapse
|
26
|
Bhattacharya T, Do HA, Rhim JW, Shin GH, Kim JT. Facile Synthesis of Multifunctional Carbon Dots from Spent Gromwell Roots and Their Application as Coating Agents. Foods 2023; 12:foods12112165. [PMID: 37297412 DOI: 10.3390/foods12112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Spent Gromwell root-based multifunctional carbon dots (g-CDs) and sulfur-functionalized g-CDs (g-SCDs) were synthesized using a hydrothermal method. The mean particle size of g-CDs was confirmed to be 9.1 nm by TEM (transmission electron microscopy) analysis. The zeta potentials of g-CDs and g-SCDs were mostly negative with a value of -12.5 mV, indicating their stability in colloidal dispersion. Antioxidant activities were 76.9 ± 1.6% and 58.9 ± 0.8% for g-CDs, and 99.0 ± 0.1% and 62.5 ± 0.5% for g-SCDs by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging tests, respectively. In addition, the bathochromic shift of g-CDs is observed when their emission peaks appear at a higher wavelength than the excitation peaks. The prepared g-CDs and g-SCDs solutions were used as a coating agent for potato slices. The browning index of the control potato slices increased significantly from 5.0 to 33.5% during 24 to 72 h storage. However, the sample potato slices coated with g-CDs or g-SCDs suppressed the increase in the browning index. In particular, the browning index of the potato slices coated with g-SCDs ranged from 1.4 to 5.5%, whereas the potato slices coated with g-CDs had a browning index ranging from 3.5 to 26.1%. The g-SCDs were more effective in delaying oxidation or browning in foods. The g-CDs and g-SCDs also played a catalytic role in the Rhodamine B dye degradation activity. This activity will be useful in the future to break down toxins and adulterants in food commodities.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeon A Do
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|