1
|
Anaya-Mancipe JM, Carlos ALM, Bastos JVDDA, Tovar Ambel EM, Velasco-Díez G, Fialho RL, Thiré RMDSM. Solution Blow Spun Mats with Beaded-Fiber Morphologies as a Drug Delivery System with Potential Use for Skin Wound Dressing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23466-23483. [PMID: 40208007 DOI: 10.1021/acsami.4c16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The regeneration of skin injuries can be aided by tissue engineering strategies, which enable the recovery of the structural and functional integrity of the damaged tissue. The Solution Blow Spinning (SBS) technique has attracted the attention of researchers due to the production of nanofiber mats in a continuous process, which exhibit high porosity and the ability to deliver drugs locally. The objective of this work was to produce and encapsulate ibuprofen in mats of PCL/PEG as a fast-acting analgesic drug delivery system. Initially, beaded nanofiber structures were produced from PCL solutions in chloroform at 8% (w/v) and PCL/PEG solutions in mass ratios of 2:1 and 1:1. The influence of the PEG concentration, gas pressure (compressed air), and solution injection rate on the fibers' morphology was analyzed by SEM. Then, the best condition for the formation of PCL/PEG beaded fiber structure was selected (1:1, 137.90 kPa, and 7.2 mL/h) for the fabrication of the mat containing ibuprofen at proportions of 5, 15, and 30% by polymer mass (PCL/PEG). The SBS-spun mats demonstrated a remarkable swelling capacity of approximately 400%, with bead presence enabling a gradual release of ibuprofen within the first 5 h. Additionally, the wound-healing assay confirmed that ibuprofen-loaded PCL/PEG8 mats significantly promoted NF migration, suggesting their potential to accelerate the wound-healing process.
Collapse
Affiliation(s)
- Javier Mauricio Anaya-Mancipe
- Program of Metallurgical and Materials Engineering-PEMM/COPPE, Universidade Federal do Rio de Janeiro (UFRJ), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Aline Luiza Machado Carlos
- Program of Metallurgical and Materials Engineering-PEMM/COPPE, Universidade Federal do Rio de Janeiro (UFRJ), 21941-598 Rio de Janeiro, RJ, Brazil
| | - João Victor Dias de Assumpção Bastos
- Program of Metallurgical and Materials Engineering-PEMM/COPPE, Universidade Federal do Rio de Janeiro (UFRJ), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Elena Maria Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Universidad Complutense de Madrid-UCM, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Guillermo Velasco-Díez
- Department of Biochemistry and Molecular Biology, School of Biology, Universidad Complutense de Madrid-UCM, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Rosana Lopes Fialho
- Post-graduation Program in Industrial Engineering, Polytechnic School, Universidade Federal da Bahia (UFBA), 40210-630 Salvador, BA, Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering-PEMM/COPPE, Universidade Federal do Rio de Janeiro (UFRJ), 21941-598 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Sanjai C, Gaonkar SL, Hakkimane SS. Harnessing Nature's Toolbox: Naturally Derived Bioactive Compounds in Nanotechnology Enhanced Formulations. ACS OMEGA 2024; 9:43302-43318. [PMID: 39494011 PMCID: PMC11525499 DOI: 10.1021/acsomega.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The vast diversity of plants in nature offers a rich reservoir of bioactive compounds that have historically played an integral role in pharmacotherapy and continue to serve as a primary source of novel therapeutic agents. Medicinal plants contain a multitude of secondary metabolites with pharmacological potential, making them indispensable in drug discovery and development. These bioactive constituents, inherent in herbal remedies, exhibit a wide range of medicinal properties due to their complex chemical compositions and structural diversity. Despite their therapeutic potential, the clinical application of crude plant extracts is often hindered by limitations, such as poor bioavailability, low biostability, and variable efficacy. These issues can diminish the therapeutic impact of plant-derived compounds. Nanotechnology presents an innovative approach to addressing these challenges through the development of nanoformulations that enhance the efficacy of bioactive compounds. This review examines both historical and recent studies on the synthesis and characterization of bioactive compounds, focusing on their effectiveness in treating various diseases. Additionally, it addresses the risks associated with the direct use of crude plant extracts in medicine, explores extraction and isolation techniques, and reviews research from the past five years on the development of bioactive compounds, their nanoformulations, and their applications in disease treatment. The review also presents recent clinical trials conducted over the last five years on crude extracts and their nanoformulated counterparts, providing insights into the clinical translation of these natural therapeutics.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department
of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santosh L. Gaonkar
- Department
of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sushruta S. Hakkimane
- Department
of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
Liu Y, Xia B, Zhao R, Qin M, Weng X, Zeng Z, Deng K, Jiang H. Automatic in situ short-distance deposition of PLGA/PLLA composite nanofibrous membranes for personalized wound dressings. NANOSCALE 2024; 16:8546-8562. [PMID: 38596837 DOI: 10.1039/d3nr06376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Improving the mechanical properties of wound dressings and achieving personalized automatic real-time in situ deposition are important for accelerating wound management and repair. In this study, we report a self-designed automatic in situ deposition device based on solution blow spinning (SBS) to prepare poly(lactic-co-glycolic acid) (PLGA) and poly-L-lactic acid (PLLA) composite (PLGA/PLLA) nanofibrous membranes for wound dressing at a short distance. Polymer solution and in situ deposition conditions, including air pressure, spinning distance, solvent extrusion rate, and spinning rate, were optimized using orthogonal experiments and characterized via dynamic mechanical analysis. The microscopic morphology and physical properties of the prepared PLGA/PLLA composite nanofibrous membranes show that their strength, adhesion, water vapor transmission rate (WVTR), water retention, water absorption, degradation, and other properties were sufficient for wound-dressing applications. To investigate the possibility of a biomedical wound-dressing material, tannic acid (TA) was incorporated into the PLGA/PLLA composite nanofibrous membranes. The resultant PLGA/PLLA/TA composite nanofibrous membranes exhibited good biocompatibility and exceptional antibacterial properties against both Escherichia coli and Staphylococcus aureus. A pilot animal study illustrated the potential of this in situ deposition of PLGA/PLLA/TA composite nanofibrous membranes across multiple applications in wound healing/repair by reducing wound scar tissue formation and fibroblast overactivation.
Collapse
Affiliation(s)
- Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Zhao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Endoscopy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Mei Qin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Zhi Zeng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Vyas G, Karpe S, Gupta K, Lad S, Kaur C, Sharma S, Singh G, Saini S, Kumar R. Threads of hope: Harnessing nanofibres-based treatment strategies for diabetic foot ulcers. J Drug Deliv Sci Technol 2024; 91:105225. [DOI: 10.1016/j.jddst.2023.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Mannai F, Elhleli H, Feriani A, Otsuka I, Belgacem MN, Moussaoui Y. Electrospun Cactus Mucilage/Poly(vinyl alcohol) Nanofibers as a Novel Wall Material for Dill Seed Essential Oil ( Anethum graveolens L.) Encapsulation: Release and Antibacterial Activities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58815-58827. [PMID: 38051792 DOI: 10.1021/acsami.3c13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This study aimed to create long-lasting carriers by producing electrospun nanofibers loaded with dill seed (Anethum graveolens L.) essential oil (DSEO), using cactus mucilage (CM) and poly(vinyl alcohol) (PVA). Continuous and uniform electrospun nanofibers with a diameter of 158 ± 18 to 230 ± 26 nm were successfully made from the CM/PVA blend solution and the CM/PVA/DSEO emulsion. Atomic force microscopy topographic images revealed that the electrospun nanofibers had a tubular morphology. The thermogravimetric curves of DSEO, CM, pure PVA, and electrospun nanofibers demonstrate that the polymers used and the essential oil have effective chemical interactions. The water contact angle results suggest that the manufactured nanofibers are hydrophilic. CM/PVA consistently achieves a remarkable encapsulation efficiency of 100% DSEO. The electrospun nanofibers enabled the controlled release of free and encapsulated DSEO, resulting in sustained long-term release. The agar disk diffusion technique was used to study the antimicrobial activity of electrospun nanofibers and nanofibers containing DSEO against Gram-positive and Gram-negative bacteria. With a minimum inhibitory concentration of 2.5 mg/mL and a minimum bactericidal concentration of 5 mg/mL, electrospun nanofibers containing DSEO demonstrated bacteriostatic and bactericidal activities against foodborne pathogenic bacteria (Staphylococcus aureus and Pseudomonas aeruginosa). The DSEO-loaded electrospun nanofibers derived from carbohydrates show promise as an active interior coating for use in biomedical and food packaging applications.
Collapse
Affiliation(s)
- Faten Mannai
- Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), University of Gafsa, Gafsa 2112, Tunisia
| | - Hanedi Elhleli
- Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), University of Gafsa, Gafsa 2112, Tunisia
| | - Anouar Feriani
- Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, University of Gafsa, Gafsa 2112, Tunisia
| | - Issei Otsuka
- University of Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | | | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|