1
|
Kim TK, Hong JM, Kim J, Kim KH, Han SJ, Kim IC, Oh H, Jo DG, Yim JH. Therapeutic Potential of Ramalin Derivatives with Enhanced Stability in the Treatment of Alzheimer's Disease. Molecules 2024; 29:5223. [PMID: 39598614 PMCID: PMC11597085 DOI: 10.3390/molecules29225223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant public health challenge with limited effective treatment options. Ramalin, a compound derived from Antarctic lichens, has shown potential in the treatment of AD because of its strong antioxidant and anti-inflammatory properties. However, its instability and toxicity have hindered the development of Ramalin as a viable therapeutic agent. The primary objective of this study was to synthesize and evaluate novel Ramalin derivatives with enhanced stabilities and reduced toxic profiles, with the aim of retaining or improving their therapeutic potential against AD. The antioxidant, anti-inflammatory, anti-BACE-1, and anti-tau activities of four synthesized Ramalin derivatives (i.e., RA-Hyd-Me, RA-Hyd-Me-Tol, RA-Sali, and RA-Benzo) were evaluated. These derivatives demonstrated significantly improved stabilities compared to the parent compound, with RA-Sali giving the most promising results. More specifically, RA-Sali exhibited a potent BACE-1 inhibitory activity and effectively reduced tau phosphorylation, a critical factor in AD pathology. Despite exhibiting reduced antioxidant activities compared to the parent compound, these derivatives represent a potential multi-targeted approach for AD treatment, marking a significant step forward in the development of stable and effective AD therapeutics.
Collapse
Affiliation(s)
- Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Jaewon Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Plant Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Chemistry, Hanseo University, Seosan 31962, Republic of Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| |
Collapse
|
2
|
Tachibana K, Hirayama R, Sato N, Hattori K, Kato T, Takeda H, Kondoh M. Association of Plasma Claudin-5 with Age and Alzheimer Disease. Int J Mol Sci 2024; 25:1419. [PMID: 38338697 PMCID: PMC10855409 DOI: 10.3390/ijms25031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Ryuichi Hirayama
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
| | - Naoyuki Sato
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan;
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Ehime, Japan;
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
3
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
4
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|