1
|
Peter R, Bidkar AP, Bobba KN, Zerefa L, Dasari C, Meher N, Wadhwa A, Oskowitz A, Liu B, Miller BW, Vetter K, Flavell RR, Seo Y. 3D small-scale dosimetry and tumor control of 225Ac radiopharmaceuticals for prostate cancer. Sci Rep 2024; 14:19938. [PMID: 39198676 PMCID: PMC11358493 DOI: 10.1038/s41598-024-70417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Radiopharmaceutical therapy using α -emitting225 Ac is an emerging treatment for patients with advanced metastatic cancers. Measurement of the spatial dose distribution in organs and tumors is needed to inform treatment dose prescription and reduce off-target toxicity, at not only organ but also sub-organ scales. Digital autoradiography with α -sensitive detection devices can measure radioactivity distributions at 20-40 μ m resolution, but anatomical characterization is typically limited to 2D. We collected digital autoradiographs across whole tissues to generate 3D dose volumes and used them to evaluate the simultaneous tumor control and regional kidney dosimetry of a novel therapeutic radiopharmaceutical for prostate cancer, [225Ac]Ac-Macropa-PEG4-YS5, in mice. 22Rv1 xenograft-bearing mice treated with 18.5 kBq of [225Ac]Ac-Macropa-PEG4-YS5 were sacrificed at 24 h and 168 h post-injection for quantitative α -particle digital autoradiography and hematoxylin and eosin staining. Gamma-ray spectroscopy of biodistribution data was used to determine temporal dynamics and213 Bi redistribution. Tumor control probability and sub-kidney dosimetry were assessed. Heterogeneous225 Ac spatial distribution was observed in both tumors and kidneys. Tumor control was maintained despite heterogeneity if cold spots coincided with necrotic regions.225 Ac dose-rate was highest in the cortex and renal vasculature. Extrapolation of tumor control suggested that kidney absorbed dose could be reduced by 41% while maintaining 90% TCP. The 3D dosimetry methods described allow for whole tumor and organ dose measurements following225 Ac radiopharmaceutical therapy, which correlate to tumor control and toxicity outcomes.
Collapse
Affiliation(s)
- Robin Peter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Adam Oskowitz
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Brian W Miller
- Departments of Radiation Oncology and Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Kai Vetter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| | - Youngho Seo
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Andrew J, Ezra-Manicum AL, Witika BA. Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer. EJNMMI Radiopharm Chem 2024; 9:62. [PMID: 39180599 PMCID: PMC11344754 DOI: 10.1186/s41181-024-00295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Prostate Cancer (PCa) is the second most diagnosed urological cancer among men worldwide. Conventional methods used for diagnosis of PCa have several pitfalls which include lack of sensitivity and specificity. On the other hand, traditional treatment of PCa poses challenges such as long-term side effects and the development of multidrug resistance (MDR). MAIN BODY Hence, there is a need for novel PCa agents with the potential to lessen the burden of these adverse effects on patients. Nanotechnology has emerged as a promising approach to support both early diagnosis and effective treatment of tumours by ensuring precise delivery of the drug to the targeted site of the disease. Most cancer-related biological processes occur on the nanoscale hence application of nanotechnology has been greatly appreciated and implemented in the management and therapeutics of cancer. Nuclear medicine plays a significant role in the non-invasive diagnosis and treatment of PCa using appropriate radiopharmaceuticals. This review aims to explore the different radiolabelled nanomaterials to enhance the specific delivery of imaging and therapeutic agents to cancer cells. Thereafter, the review appraises the advantages and disadvantages of these modalities and then discusses and outlines the benefits of radiolabelled nanomaterials in targeting cancerous prostatic tumours. Moreover, the nanoradiotheranostic approaches currently developed for PCa are discussed and finally the prospects of combining radiopharmaceuticals with nanotechnology in improving PCa outcomes will be highlighted. CONCLUSION Nanomaterials have great potential, but safety and biocompatibility issues remain. Notwithstanding, the combination of nanomaterials with radiotherapeutics may improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Jubilee Andrew
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Amanda-Lee Ezra-Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
3
|
Veenstra MMK, Vegt E, Segbers M, Franssen S, Koerkamp BG, Verburg FA, Thomeer MGJ. Intra-arterial PSMA injection using hepatic arterial infusion pump in intrahepatic cholangiocarcinoma: a proof-of-concept study. Eur Radiol Exp 2024; 8:90. [PMID: 39090480 PMCID: PMC11294287 DOI: 10.1186/s41747-024-00496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) targeted tracers show increased uptake in several malignancies, indicating a potential for peptide radioligand therapy. Intra-arterial injection of radiotracers can increase the therapeutic window. This study aimed to evaluate the feasibility of intra-arterial injection of [68Ga]Ga-PSMA-11 for intrahepatic cholangiocarcinoma and compare tracer uptake after intrahepatic arterial injection and intravenous injection. Three patients with intrahepatic cholangiocarcinoma received [68Ga]Ga-PSMA-11 through a hepatic arterial infusion pump, followed by positron emission tomography/computed tomography (PET/CT). Two-three days later, patients underwent PET/CT after intravenous [68Ga]Ga-PSMA-11 injection. All tumours showed higher uptake on the intra-arterial scan compared with the intravenous scan: the intra-arterial / intravenous standardised uptake value normalised by lean body mass ratios were 1.40, 1.46, and 1.54. Local intra-arterial PSMA injection is possible in patients with intrahepatic cholangiocarcinoma. Local injection increases tumour-to-normal tissue ratios, increasing the therapeutic window for theranostic applications. RELEVANCE STATEMENT: Intra-arterial Prostate specific membrane antigen (PSMA) injection increases the therapeutic window for potential theranostic application in intrahepatic cholangiocarcinoma. KEY POINTS: Three patients with intrahepatic cholangiocarcinoma underwent PET/CT after intra-arterial and intravenous injection of [68Ga]Ga-PSMA-11. Intra-arterial injection showed higher uptake than intravenous injection. PSMA-targeted imaging could be valuable for a subset of intrahepatic cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Mara Marieke Katrien Veenstra
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Erik Vegt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stijn Franssen
- Department of Surgery, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Frederik Anton Verburg
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
4
|
Arjuna A, Milborne B, Putra AR, Mulyaningsih TR, Setiawan H, Islam MT, Felfel R, Ahmed I. Development of samarium-doped phosphate glass microspheres for internal radiotheranostic applications. Int J Pharm 2024; 653:123919. [PMID: 38373598 DOI: 10.1016/j.ijpharm.2024.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Internal radiotherapy delivers radioactive sources inside the body, near to or into malignant tumours, which may be particularly effective when malignancies are not responding to external beam radiotherapy. A pure beta emitter, 90Y, is currently used for internal radiotherapy. However, theranostic radionuclide-doped microspheres can be developed by incorporating 153Sm, which emits therapeutic beta and diagnostic gamma energies. This study investigated the production of high concentrations of samarium-content doped phosphate-based glass microspheres. The glass P60 (i.e. 60P2O5-25CaO-15Na2O) was mixed with Sm2O3 at ratios of 75:25 (G75:Sm25), 50:50 (G50:Sm50) and 25:75 (G25:Sm75) and processed via flame spheroidisation. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) confirmed the microsphere uniformity with significantly high samarium content up to 44 % in G25:Sm75. Via X-ray diffraction (XRD) analysis, samarium-doped microspheres appeared to be glass-ceramic in nature. Mass-loss, size and pH changes were performed over 28 days, revealing a significant increase in samarium microsphere stability. After 15 min of neutron activation (neutron flux 3.01 × 1013 n.cm-2.s-1), the specific activity of the microspheres (G75:Sm25, G50:Sm50 and G25:Sm75) was 0.28, 0.54 and 0.58 GBq.g-1, respectively. Therefore, the samarium microspheres produced in this study provide great potential for improving internal radiotherapy treatment for liver cancer by avoiding complex procedures and using less microspheres with shorter irradiation time.
Collapse
Affiliation(s)
- Andi Arjuna
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ben Milborne
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amal Rezka Putra
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Theresia Rina Mulyaningsih
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Herlan Setiawan
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Reda Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Metebi A, Kauffman N, Xu L, Singh SK, Nayback C, Fan J, Johnson N, Diemer J, Grimm T, Zamiara M, Zinn KR. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models. Front Chem 2024; 11:1322773. [PMID: 38333550 PMCID: PMC10850308 DOI: 10.3389/fchem.2023.1322773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.
Collapse
Affiliation(s)
- Abdullah Metebi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Radiological Sciences Department, Taif University, Taif, Saudi Arabia
| | - Nathan Kauffman
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Lu Xu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Satyendra Kumar Singh
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chelsea Nayback
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
| | | | | | | | | | - Kurt R. Zinn
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Kauffman N, Singh SK, Morrison J, Zinn KR. Effective therapy with Bismuth-212 labeled macroaggregated albumin in orthotopic mouse breast tumor models. Front Chem 2023; 11:1204872. [PMID: 37234203 PMCID: PMC10206259 DOI: 10.3389/fchem.2023.1204872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Intravascularly administered radiation therapy using beta (β-)-emitting radioisotopes has relied on either intravenously injected radiolabeled peptides that target cancer or radiolabeled microspheres that are trapped in the tumor following intra-arterial delivery. More recently, targeted intravenous radiopeptide therapies have explored the use of alpha (α)-particle emitting radioisotopes, but microspheres radiolabeled with α-particle emitters have not yet been studied. Here, FDA-approved macroaggregated albumin (MAA) particles were radiolabeled with Bismuth-212 (Bi-212-MAA) and evaluated using clonogenic and survival assays in vitro and using immune-competent mouse models of breast cancer. The in vivo biodistribution of Bi-212-MAA was investigated in Balb/c and C57BL/6 mice with 4T1 and EO771 orthotopic breast tumors, respectively. The same orthotopic breast cancer models were used to evaluate the treatment efficacy of Bi-212-MAA. Our results showed that macroaggregated albumin can be stably radiolabeled with Bi-212 and that Bi-212-MAA can deliver significant radiation therapy to reduce the growth and clonogenic potential of 4T1 and EO771 cells in vitro. Additionally, Bi-212-MAA treatment upregulated γH2AX and cleaved Caspase-3 expression in 4T1 cells. Biodistribution analyses showed 87-93% of the Bi-212-MAA remained in 4T1 and EO771 tumors 2 and 4 h after injection. Following single-tumor treatments with Bi-212-MAA there was a significant reduction in the growth of both 4T1 and EO771 breast tumors over the 18-day monitoring period. Overall, these findings showed that Bi-212-MAA was stably radiolabeled and inhibited breast cancer growth. Bi-212-MAA is an exciting platform to study α-particle therapy and will be easily translatable to larger animal models and human clinical trials.
Collapse
Affiliation(s)
- Nathan Kauffman
- Comparative Medicine and Integrative Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Satyendra Kumar Singh
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - James Morrison
- Advanced Radiology Services, Grand Rapids, MI, United States
| | - Kurt R. Zinn
- Departments of Radiology, Biomedical Engineering, Small Animal Clinical Sciences, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|