1
|
Nag OK, Oh E, Delehanty JB. Fusogenic Liposomes for the Intracellular Delivery of Phosphocreatine. Pharmaceuticals (Basel) 2024; 17:1351. [PMID: 39458992 PMCID: PMC11510153 DOI: 10.3390/ph17101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objective: Maintaining intracellular adenosine triphosphate (ATP) levels is essential for numerous cellular functions, including energy metabolism, muscle contraction, and nerve impulse transmission. ATP is primarily synthesized in mitochondria through oxidative phosphorylation. It is also generated in the cytosol under anaerobic conditions using phosphocreatine (PCr) as a phosphate donor to adenosine diphosphate. However, the intracellular delivery of exogenous PCr is challenging as it does not readily cross the plasma membrane. This complicates the use of PCr as a therapeutic agent to maintain energy homeostasis or to treat conditions like cerebral creatine deficiency syndrome (CDS), which results from defective creatine transporters. Methods: This study employs the use of fusogenic liposomes to deliver PCr directly into the cytosol, bypassing membrane impermeability issues. We engineered various 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based fusogenic liposomes, incorporating phospholipids such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in combination with phospholipid-aromatic dye components to facilitate membrane fusion and to enhance the delivery of the PCr cargo. Liposomal formulations were co-loaded with membrane-impermeable chromophores and PCr and studied on live cells using confocal microscopy. Conclusions: We demonstrated the successful intracellular delivery of these agents and observed a 23% increase in intracellular ATP levels in cells treated with PCr-loaded liposomes. This increase was not observed with free PCr, confirming the effectiveness of the liposome-based delivery system. Additionally, cell viability assays showed minimal toxicity from the liposomes. Our results indicate that fusogenic liposomes are a promising method for the delivery of PCr (and potentially other cell-impermeable therapeutic agents) to the cellular cytosol. The approach demonstrated here could be advantageous for treating energy-related disorders and improving cellular energy homeostasis.
Collapse
Affiliation(s)
- Okhil K. Nag
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, US Naval Research Laboratory, Washington, DC 20375, USA;
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
2
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
3
|
Rahaman W, Chaudhuri A. Relative biomembrane fusogenicities of the tumor-selective liposomes of RGDK- and CGKRK-lipopeptides. NANOSCALE 2024; 16:9836-9852. [PMID: 38713132 DOI: 10.1039/d4nr00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cancer is the second leading cause of death globally after heart diseases. Currently used highly cytotoxic anti-cancer drugs not only kill cancer cells but also often kill non-cancerous healthy body cells, causing adverse side effects. Efforts are now being directed towards developing tumor-selective chemotherapy. Tumor/tumor endothelial cell selective peptide ligands are being covalently grafted onto the exo-surfaces of drug carriers such as liposomes, polymers, etc. A number of prior studies used conjugation of tumor/tumor endothelial cell-selective RGDK- or CGKRK-peptide ligands on the outer surfaces of liposomes, metal-based nanoparticles, single walled carbon nanotubes (SWNTs), etc. However, studies aimed at examining the relative cell membrane fusogenicities and the relative degrees of cellular uptake for the RGDK- and CGKRK-ligand-grafted nanometric drug carriers have not yet been undertaken. Herein, using the widely used liposomes of DOPC, DOPE, DOPS and cholesterol (45 : 25 : 20 : 15, w/w ratio) as the model biomembranes and the fluorescence resonance energy transfer (FRET) assay for measuring membrane fusogenicities, we show that the liposomes of the RGDK-lipopeptide are more biomembrane fusogenic than the liposomes of the CGKRK-lipopeptide. Notably, such FRET assay-derived relative biomembrane fusogenicities of the liposomes of RGDK- and CGKRK-lipopeptides were found to be consistent with their relative degrees of cellular uptake in cultured cancer cells. The present findings open the door for undertaking in-depth in vivo studies aimed at evaluating the relative therapeutic potential of different nanocarriers of drugs/genes/siRNA having tumor-targeting RGDK- and CGKRK-peptides on their exo-surfaces.
Collapse
Affiliation(s)
- Wahida Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Arabinda Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| |
Collapse
|
4
|
Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A 2024; 121:e2307800120. [PMID: 38437552 PMCID: PMC10945858 DOI: 10.1073/pnas.2307800120] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Lipid nanoparticles (LNPs) have recently emerged as a powerful and versatile clinically approved platform for nucleic acid delivery, specifically for mRNA vaccines. A major bottleneck in the field is the release of mRNA-LNPs from the endosomal pathways into the cytosol of cells where they can execute their encoded functions. The data regarding the mechanism of these endosomal escape processes are limited and contradicting. Despite extensive research, there is no consensus regarding the compartment of escape, the cause of the inefficient escape and are currently lacking a robust method to detect the escape. Here, we review the currently known mechanisms of endosomal escape and the available methods to study this process. We critically discuss the limitations and challenges of these methods and the possibilities to overcome these challenges. We propose that the development of currently lacking robust, quantitative high-throughput techniques to study endosomal escape is timely and essential. A better understanding of this process will enable better RNA-LNP designs with improved efficiency to unlock new therapeutic modalities.
Collapse
Affiliation(s)
- Sushmita Chatterjee
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|