1
|
Li T, Zhou S, Wang L, Zhao T, Wang J, Shao F. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn 2024; 51:367-384. [PMID: 38554227 DOI: 10.1007/s10928-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.
Collapse
Affiliation(s)
- Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Briki M, Murisier A, Guidi M, Seydoux C, Buclin T, Marzolini C, Girardin FR, Thoma Y, Carrara S, Choong E, Decosterd LA. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods for the therapeutic drug monitoring of cytotoxic anticancer drugs: An update. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124039. [PMID: 38490042 DOI: 10.1016/j.jchromb.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
In the era of precision medicine, there is increasing evidence that conventional cytotoxic agents may be suitable candidates for therapeutic drug monitoring (TDM)- guided drug dosage adjustments and patient's tailored personalization of non-selective chemotherapies. To that end, many liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays have been developed for the quantification of conventional cytotoxic anticancer chemotherapies, that have been comprehensively and critically reviewed. The use of stable isotopically labelled internal standards (IS) of cytotoxic drugs was strikingly uncommon, accounting for only 48 % of the methods found, although their use could possible to suitably circumvent patients' samples matrix effects variability. Furthermore, this approach would increase the reliability of cytotoxic drug quantification in highly multi-mediated cancer patients with complex fluctuating pathophysiological and clinical conditions. LC-MS/MS assays can accommodate multiplexed analyses of cytotoxic drugs with optimal selectivity and specificity as well as short analytical times and, when using stable-isotopically labelled IS for quantification, provide concentrations measurements with a high degree of certainty. However, there are still organisational, pharmacological, and medical constraints to tackle before TDM of cytotoxic drugs can be more largely adopted in the clinics for contributing to our ever-lasting quest to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- M Briki
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - A Murisier
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - M Guidi
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland; Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Seydoux
- Internal Medicine Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - T Buclin
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Marzolini
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - F R Girardin
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Y Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - S Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - E Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - L A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
3
|
Zhou Y, Li Y, Wang H, Sun H, Su J, Fan Y, Xing W, Fu J. Mesenchymal Stem Cells Target Gastric Cancer and Deliver Epirubicin via Tunneling Nanotubes for Enhanced Chemotherapy. Curr Stem Cell Res Ther 2024; 19:1402-1413. [PMID: 38173205 DOI: 10.2174/011574888x287102240101060146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes. OBJECTIVE Epirubicin delivery to gastric cancer cells using mesenchymal stem cells. METHODS In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS. RESULTS Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05). CONCLUSIONS We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.
Collapse
Affiliation(s)
- Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haibin Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haolin Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jing Su
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yaqiong Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Wei Xing
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jie Fu
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|