1
|
Kim J, Cho H, Kim KS. Lactobacilli-derived extracellular vesicles as synergistic biomolecules for colistin efficacy against Acinetobacter baumannii. Microbiol Res 2025; 295:128104. [PMID: 40010016 DOI: 10.1016/j.micres.2025.128104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Acinetobacter baumannii (A. baumannii), a gram-negative bacterium resistant to antibiotics, presents substantial medical challenges, causing nosocomial infections with high fatality rates. Colistin (COL) is frequently employed as a last-line defense against these pathogens. Nevertheless, its therapeutic efficacy has been significantly reduced due to the emergence of COL-resistant strains. With the slow development of novel antibiotics, researchers have explored materials to boost the effectiveness of COL against such pathogens. Postbiotics, comprising bioactive compounds derived from probiotic microorganisms, have shown potential antibacterial properties and may work synergistically with certain antibiotics. This study aimed to confirm the role of extracellular vesicles (EVs) as a collection of bioactive molecules that could potentially synergize with COL. EVs from various Lactobacilli strains (LEVs) were evaluated for their effect on COL susceptibility. The findings indicated that, compared to COL treatment alone, LEVs enhanced 4- to 8-fold bactericidal efficacy of COL against A. baumannii strains in the level of minimum inhibitory concentrations (MIC). Additional mechanistic investigations into the synergistic effects of LEVs on established COL mechanisms, including lipopolysaccharide binding, reactive oxygen species (ROS) generation, and biofilm formation, showed that LEVs act as either ROS enhancers or biofilm inhibitors, depending on the bacterial strains. Finally, we demonstrated that repeated use of LEVs did not induce COL resistance in A. baumannii. These results provide the first evidence that LEVs can serve as effective postbiotics, enhancing the susceptibility of A. baumannii strains to COL.
Collapse
Affiliation(s)
- Jisung Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
2
|
Xiu L, Wu Y, Lin G, Zhang Y, Huang L. Bacterial membrane vesicles: orchestrators of interkingdom interactions in microbial communities for environmental adaptation and pathogenic dynamics. Front Immunol 2024; 15:1371317. [PMID: 38576623 PMCID: PMC10991846 DOI: 10.3389/fimmu.2024.1371317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Bacterial membrane vesicles (MVs) have attracted increasing attention due to their significant roles in bacterial physiology and pathogenic processes. In this review, we provide an overview of the importance and current research status of MVs in regulating bacterial physiology and pathogenic processes, as well as their crucial roles in environmental adaptation and pathogenic infections. We describe the formation mechanism, composition, structure, and functions of MVs, and discuss the various roles of MVs in bacterial environmental adaptation and pathogenic infections. Additionally, we analyze the limitations and challenges of MV-related research and prospect the potential applications of MVs in environmental adaptation, pathogenic mechanisms, and novel therapeutic strategies. This review emphasizes the significance of understanding and studying MVs for the development of new insights into bacterial environmental adaptation and pathogenic processes. Overall, this review contributes to our understanding of the intricate interplay between bacteria and their environment and provides valuable insights for the development of novel therapeutic strategies targeting bacterial pathogenicity.
Collapse
Affiliation(s)
- Lijun Xiu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, Fujian, China
| | - Yuwei Wu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, Fujian, China
| | - Gongshi Lin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, Fujian, China
- Xiamen Marine & Fisheries Research Institute, Xiamen, Fujian, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, China
| | - Lixing Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Li Q, Li J, He T, Ji X, Wei R, Yu M, Wang R. Sub-MIC Antibiotics Modulate Productions of Outer Membrane Vesicles in Tigecycline-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:276. [PMID: 38534711 DOI: 10.3390/antibiotics13030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial resistance (AMR) has been recognized as one of the most important crises affecting global human health in the 21st century. Tigecycline is one of the last resort antibiotics for treating severe infections caused by multi-drug resistant Enterobacteriaceae. However, the mobile resistance gene tet(X4), which could mediate high-level tigecycline resistance, was discovered in 2019. The outer membrane vesicle (OMV) has been recognized as a new route for horizontal gene transfer; antimicrobial resistant bacteria also have the ability to secret OMVs, while little is known about the impact of antibiotics on the secretion and characteristics of OMVs from tigecycline resistant bacteria till now. This study aimed to investigate the effects of antibiotics on the production and traits of a tigecycline resistant Escherichia coli strain of 47EC. The results showed that sub-inhibitory (1/2 MIC or 1/4 MIC) concentrations of gentamicin, meropenem, ceftazidime, chloramphenicol, tigecycline, ciprofloxacin, polymycin, rifaximin and mitomycin C could significantly increase the secretion of OMVs (0.713 ± 0.05~6.333 ± 0.15 mg/mL) from E. coli 47EC compared to the respective untreated control (0.709 ± 0.03 mg/mL). In addition, the particle sizes of OMVs were generally larger, and the zeta potential were lower in the antibiotics-treated groups than those of the antibiotic-free group. The copy numbers of the tigecycline resistance gene of tet(X4) in the OMVs of most antimicrobial-treated groups were higher than that of the control group. Moreover, transcriptome analysis on ciprofloxacin-treated E. coli 47EC indicated that the SOS response and prophage activation might participate in the ciprofloxacin-induced OMV formation. In conclusion, the clinical application of antibiotics in treating bacterial infections, especially multi-drug resistant bacteria, might lead to the increased secretion of bacterial OMVs and the enrichment of antimicrobial-resistant genes in the OMVs.
Collapse
Affiliation(s)
- Qianru Li
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao He
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xing Ji
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ruicheng Wei
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Meiling Yu
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ran Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
Melo-Marques I, Cardoso SM, Empadinhas N. Bacterial extracellular vesicles at the interface of gut microbiota and immunity. Gut Microbes 2024; 16:2396494. [PMID: 39340209 PMCID: PMC11444517 DOI: 10.1080/19490976.2024.2396494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) are nano-sized lipid-shielded structures released by bacteria and that play an important role in intercellular communication. Their broad taxonomic origins and varying cargo compositions suggest their active participation in significant biological mechanisms. Specifically, they are involved in directly modulating microbial ecosystems, competing with other organisms, contributing to pathogenicity, and influencing the immunity of their hosts. This review examines the mechanisms that underlie the modulatory effects of BEVs on gut dynamics and immunity. Understanding how BEVs modulate microbiota composition and functional imbalances is crucial, as gut dysbiosis is implicated not only in the pathogenesis of various gastrointestinal, metabolic, and neurological diseases, but also in reducing resistance to colonization by enteric pathogens, which is particularly concerning given the current antimicrobial resistance crisis. This review summarizes recent advancements in the field of BEVs to encourage further research into these enigmatic entities. This will facilitate a better understanding of intra- and interkingdom communication phenomena and reveal promising therapeutic approaches.
Collapse
Affiliation(s)
- Inês Melo-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Gao D, Tian C, Huang D, Wang S, Bai Y, Ma T, Fan X. Genome sequence of a tigecycline-resistant Acinetobacter seifertii recovered in human bloodstream infection in China. J Glob Antimicrob Resist 2023; 34:39-42. [PMID: 37364734 DOI: 10.1016/j.jgar.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES The phylogenetic characteristics of Acinetobacter seifertii clinical strain are not well-studied. Here, we reported one tigecycline-resistant ST1612Pasteur A. seifertii isolated from bloodstream infections (BSI) in China. METHODS Antimicrobial susceptibility tests were conducted via broth microdilution. Whole-genome sequencing (WGS) was performed and annotation was conducted using rapid annotations subsystems technology (RAST) server. Multilocus sequence typing (MLST), capsular polysaccharide (KL), and lipoolygosaccharide (OCL) were analysed using PubMLST and Kaptive. Resistance genes, virulence factors, and comparative genomics analysis were performed. Cloning, mutations of efflux pump-related genes, and expression level were further investigated. RESULTS The draft genome sequence of A. seifertii ASTCM strain is made up of 109 contigs with a total length of 4,074,640 bp. Based on the RAST results, 3923 genes that belonged to 310 subsystems were annotated. Acinetobacter seifertii ASTCM was ST1612Pasteur with KL26 and OCL4, respectively. It was resistant to gentamicin and tigecycline. ASTCM harboured tet(39), sul2, and msr(E)-mph(E), and one amino acid mutation in Tet(39) (T175A) was further identified. Nevertheless, the signal mutation failed to contribute to susceptibility change of tigecycline. Of note, several amino acid substitutions were identified in AdeRS, AdeN, AdeL, and Trm, which could lead to overexpression of adeB, adeG, and adeJ efflux pump genes and further possibly lead to tigecycline resistance. Phylogenetic analysis showed that a huge diversity was observed among A. seifertii strains based on 27-52,193 SNPs difference. CONCLUSION In summary, we reported a tigecycline-resistant ST1612Pasteur A. seifertii in China. Early detection is recommended to prevent their further spread in clinical settings.
Collapse
Affiliation(s)
- Donghong Gao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Delian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tianhong Ma
- Department of Pharmacy, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China.
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|