1
|
Chakraborty A, Jyoti, Maji TK. Integration of metal-organic frameworks and clay toward functional composite materials. Dalton Trans 2025; 54:433-457. [PMID: 39618288 DOI: 10.1039/d4dt02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal-organic frameworks (MOFs) have become increasingly important as a class of porous crystalline materials because of their diverse applications. At the same time, significant progress has been achieved in the field of MOF-based composite materials toward novel applications based on the synergistic effect of two or more different components. Clay materials have been explored recently in MOF chemistry for the synthesis of MOF-clay composites, which are a new class of functional materials synthesized by a cooperative combination of MOFs with clay. Such composites have evolved only in the recent past with important functions and applications, such as enhanced gas storage and separation, CO2 capture and conversion, catalysis, drug delivery, and water harvesting. Notably, the typical shortcomings of MOFs, such as moisture sensitivity, poor water dispersibility, poor thermal and chemical stability, and poor processability, could be overcome by developing novel MOF-clay composites. This article provides a concise overview of MOF-clay composites and their applications in various fields that will drive the interest of researchers to explore the emerging field of MOF-clay chemistry. In the initial sections, we classify the clays that have been used in MOF chemistry and briefly discuss their structures and chemistry. We also present the advantages of MOF-clay composites and discuss their synthetic methodologies. In the later sections, we classify different MOF-clay composites based on the clay and present some representative examples of such composites that show unique properties and applications. Finally, the development in this field is summarized, and the future scope of such composites is discussed.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Jyoti
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
2
|
Chen H, Su X, Luo Y, Liao Y, Wang F, Huang L, Fan A, Li J, Yue P. Natural-derived porous nanocarriers for the delivery of essential oils. Chin J Nat Med 2024; 22:1117-1133. [PMID: 39725512 DOI: 10.1016/s1875-5364(24)60731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 12/28/2024]
Abstract
Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs. Porous nanoclays are natural clay minerals with a layered structure. They possess unique structural characteristics such as large pore size, regular distribution, and tunable particle size, which are extensively utilized in drug delivery, adsorption separation, reaction catalysis, and other fields. Natural-derived porous nanoclays have garnered considerable attention for the encapsulation and delivery of EOs. This review comprehensively summarizes the structure, types, and properties of natural-derived porous nanoclays, focusing on the structural characteristics of porous nanoclays such as montmorillonite, palygorskite, halloysite, kaolinite, vermiculite, and natural zeolite. It also examines research advances in their delivery of EOs and explores engineering strategies to enhance the delivery of EOs by natural-derived porous nanoclays. Finally, various applications of natural-derived porous nanoclays for EOs in antibacterial, food preservation, repellent, and insecticide aspects are presented, providing a reference for the development and application of EOs.
Collapse
Affiliation(s)
- Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yijuan Luo
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Aiguo Fan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330077, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China.
| |
Collapse
|
3
|
Ruggeri M, Nomicisio C, Taviot-Guého C, Vigani B, Boselli C, Grisoli P, Icaro Cornaglia A, Bianchi E, Viseras C, Rossi S, Sandri G. Smart copper-doped clays in biomimetic microparticles for wound healing and infection control. Mater Today Bio 2024; 29:101292. [PMID: 39483391 PMCID: PMC11525154 DOI: 10.1016/j.mtbio.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles' antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, UMR CNRS 6296, 24 av Blaise Pascal, 63171, Aubière, France
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
4
|
Fatale S, Patil JK, Pardeshi CV, Pande VV, Bhutkar MA, Parashar K, Sonawane RO. Montmorillonite: An advanced material with diverse pharmaceutical and medicinal applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00166-4. [PMID: 39515642 DOI: 10.1016/j.pharma.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Montmorillonite (MMT) clay is composed of naturally layered silicate. The clays were more popular in the pharmaceutical and other various fields due to their beneficial physicochemical properties viz. non-toxicity, high surface area, efficient adsorption capability, high swellability, high dispersibility, thixotropic behaviour, and cation exchange capacity. Chemically modified clay provides significant opportunities in variety of applications. MMT finds very crucial place in pharmaceutical field owing to its medicinal properties, which may be used to delay the drug release in chronic physiological conditions and the targeted drug release as well. It is also used to improve the dissolution rate of certain drug molecules, which increased the attention of the researchers to explore the MMT for drug delivery applications. MMT clay has been used as pharmaceutical aids viz. suspending agent, lubricant, anticaking agent, diluent, emulsifier, nanocomposites-forming material, and sometimes filler. MMT clay have been investigated in the fabrication of different pharmaceutical formulations viz. hydrogel, films, nanocomposites, and matrix-based systems. MMT has obtained industrial importance due to its adsorption property and also finds use in wastewater treatment. Other than this, MMT also finds applications in cosmetic industry, food industry, and paper industry. Considering the wide applicability of MMT, it is need of an hour to explore the MMT for further commercial exploitation.
Collapse
Affiliation(s)
- Sagar Fatale
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Javesh K Patil
- Department of Pharmacognasy. PSGVPM'S College of Pharmacy, Shahada, India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Vishal V Pande
- Department of Pharmaceutics, RSMs N.N. Sattha College of Pharmacy, Ahamadnagar, India
| | - Mangesh A Bhutkar
- Department of Pharmaceutics, Rajaram Bapu College of Pharmacy, Kasegaon, India
| | - Komal Parashar
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Raju O Sonawane
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India.
| |
Collapse
|
5
|
Omrani S, Gamoudi S, Viseras C, Moussaoui Y, Sainz-Díaz CI. The Use of Organoclays as Excipient for Metformin Delivery: Experimental and Computational Study. Molecules 2024; 29:4612. [PMID: 39407542 PMCID: PMC11478050 DOI: 10.3390/molecules29194612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This work combines experimental and computational modeling studies for the preparation of a composite of metformin and an organoclay, examining the advantages of a Tunisian clay used for drug delivery applications. The clay mineral studied is a montmorillonite-like smectite (Sm-Na), and the organoclay derivative (HDTMA-Sm) was used as a drug carrier for metformin hydrochloride (MET). In order to assess the MET loading into the clays, these materials were characterized by means of cation exchange capacity assessment, specific surface area measurement, and with the techniques of X-ray diffraction (XRD), differential scanning calorimetry, X-ray fluorescence spectroscopy, and Fourier-transformed infrared spectroscopy. Computational molecular modeling studies showed the surface adsorption process, identifying the clay-drug interactions through hydrogen bonds, and assessing electrostatic interactions for the hybrid MET/Sm-Na and hydrophobic interactions and cation exchange for the hybrid MET/HDTMA-Sm. The results show that the clays (Sm-Na and HDTMA-Sm) are capable of adsorbing MET, reaching a maximum load of 12.42 and 21.97 %, respectively. The adsorption isotherms were fitted by the Freundlich model, indicating heterogeneous adsorption of the studied adsorbate-adsorbent system, and they followed pseudo-second-order kinetics. The calculations of ΔGº indicate the spontaneous and reversible nature of the adsorption. The calculation of ΔH° indicates physical adsorption for the purified clay (Sm-Na) and chemical adsorption for the modified clay (HDTMA-Sm). The release of intercalated MET was studied in media simulating gastric and intestinal fluids, revealing that the purified clay (Sm-Na) and the modified organoclay (HDTMA-Sm) can be used as carriers in controlled drug delivery in future clinical applications. The molecular modeling studies confirmed the experimental phenomena, showing that the main adsorption mechanism is the cation exchange process between proton and MET cations into the interlayer space.
Collapse
Affiliation(s)
- Sondes Omrani
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia;
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia;
| | - Safa Gamoudi
- National Engineering School of Gafsa, University of Gafsa, Sidi Ahmed Zarroug, Gafsa 2112, Tunisia;
- Laboratory of Composite Materials and Clay Minerals, National Center for Research in Materials Science, TechnopoleBorjCedria, B.P. 73, Soliman 8027, Tunisia
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain;
| | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia;
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - C. Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. de las Palmeras 4, 18100 Armilla, Spain
| |
Collapse
|
6
|
Krajišnik D, Uskoković-Marković S, Daković A. Chitosan-Clay Mineral Nanocomposites with Antibacterial Activity for Biomedical Application: Advantages and Future Perspectives. Int J Mol Sci 2024; 25:10377. [PMID: 39408707 PMCID: PMC11476839 DOI: 10.3390/ijms251910377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polymers of natural origin, such as representatives of various polysaccharides (e.g., cellulose, dextran, hyaluronic acid, gellan gum, etc.), and their derivatives, have a long tradition in biomedical applications. Among them, the use of chitosan as a safe, biocompatible, and environmentally friendly heteropolysaccharide has been particularly intensively researched over the last two decades. The potential of using chitosan for medical purposes is reflected in its unique cationic nature, viscosity-increasing and gel-forming ability, non-toxicity in living cells, antimicrobial activity, mucoadhesiveness, biodegradability, as well as the possibility of chemical modification. The intuitive use of clay minerals in the treatment of superficial wounds has been known in traditional medicine for thousands of years. To improve efficacy and overcome the ubiquitous bacterial resistance, the beneficial properties of chitosan have been utilized for the preparation of chitosan-clay mineral bionanocomposites. The focus of this review is on composites containing chitosan with montmorillonite and halloysite as representatives of clay minerals. This review highlights the antibacterial efficacy of chitosan-clay mineral bionanocomposites in drug delivery and in the treatment of topical skin infections and wound healing. Finally, an overview of the preparation, characterization, and possible future perspectives related to the use of these advancing composites for biomedical applications is presented.
Collapse
Affiliation(s)
- Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Snežana Uskoković-Marković
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Aleksandra Daković
- Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
8
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
9
|
Bastos CM, Rocha F, Patinha C, Marinho-Reis P. Characterization of percutaneous absorption of calcium, magnesium, and potentially toxic elements in two tailored sulfurous therapeutic peloids: a comprehensive in vitro pilot study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1061-1072. [PMID: 38427095 PMCID: PMC11108904 DOI: 10.1007/s00484-024-02644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Pelotherapy treatments in thermal spas, which utilize peloids composed of clay minerals mixed with saltwater or mineral-medicinal water, can have various effects on spa users, ranging from therapeutic to potential adverse reactions. Despite the widespread use of peloids, comprehensive information on the penetration and permeation of essential and potentially toxic elements into deeper layers of the skin during pelotherapy is limited. Understanding the concentrations of these elements is crucial for evaluating therapeutic benefits and ensuring safety. This study investigates the in vitro availability and absorption of calcium, magnesium, and potentially toxic elements in two peloids, considering their formulation matrix. To replicate the pelotherapy methodology, an in vitro permeation experiment was conducted using a vertical diffusion chamber (Franz cells) and a biological system with human skin membranes from five Caucasian women, age range between 25 and 51 years. The experiment involved heating the peloids to 45℃. The results emphasize the possible transport properties of chemical elements in peloids, providing valuable information related to potential therapeutic efficacy and safety considerations. Despite no apparent differences between peloids' chemical composition, the method identified permeation variations among chemical elements. The methodology employed in this study adheres to the guidelines outlined by OECD for analyzing skin absorption through an in vitro approach. Furthermore, it aligns with the associated OECD guidance document for conducting skin absorption studies. The replicability of this methodology not only facilitates the analysis of peloids pre-formulation but also provides a robust means to evaluate the effectiveness of therapeutic elements during topical administration, particularly those with potential toxicity concerns.
Collapse
Affiliation(s)
- Carla Marina Bastos
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal.
- Exatronic, Aveiro, Lda. 3800-373, Portugal.
| | - Fernando Rocha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Patinha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paula Marinho-Reis
- Institute of Earth Sciences (ICT), Pole of the University of Minho, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
10
|
Massaro M, Borrego-Sánchez A, Viseras-Iborra C, Cinà G, García-Villén F, Liotta LF, Lopez Galindo A, Pimentel C, Sainz-Díaz CI, Sánchez-Espejo R, Riela S. Hectorite/Phenanthroline-Based Nanomaterial as Fluorescent Sensor for Zn Ion Detection: A Theoretical and Experimental Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:880. [PMID: 38786838 PMCID: PMC11124426 DOI: 10.3390/nano14100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a very low solubility in aqueous media, and, thus, it is necessary to adopt some derivation strategies. Clay minerals, for example, hectorite, as natural materials, are biocompatible and available in large amounts at a very low cost that have been extensively used as carrier systems for the delivery of different hydrophobic species. In the present work, we report the synthesis and characterization of a hectorite/phenanthroline nanomaterial as a potential fluorescent sensor for Zn ion detection in water. The interaction of phenanthroline with the Ht interlaminar space was thoroughly investigated, via both theoretical and experimental studies (i.e., thermogravimetry, FT-IR, UV-vis and fluorescence spectroscopies and XRD measurements), while its morphology was imaged by scanning electron microscopy. Afterwards, the possibility to use it as sensor for the detection of Zn2+ ions, in comparison to other metal ions, was investigated through fluorescent measurements, and the stability of the solid Ht/Phe/Zn complex was assessed by different experimental and theoretical measurements.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (G.C.)
| | - Ana Borrego-Sánchez
- Instituto de Ciencia Molecular, Universitat de València, Carrer del Catedrátic José Beltrán Martinez 2, 46980 Paterna, Spain;
| | - César Viseras-Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (F.G.-V.); (R.S.-E.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada (CSIC-UGR), Av.da de las Palmeras 4, 18100 Armilla, Spain; (A.L.G.); (C.I.S.-D.)
| | - Giuseppe Cinà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (G.C.)
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (F.G.-V.); (R.S.-E.)
| | - Leonarda F. Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati-Consiglio Nazionale delle Ricerche (ISMN-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Alberto Lopez Galindo
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada (CSIC-UGR), Av.da de las Palmeras 4, 18100 Armilla, Spain; (A.L.G.); (C.I.S.-D.)
| | - Carlos Pimentel
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/José Antonio Novais, 12, 28040 Madrid, Spain;
| | - Claro Ignacio Sainz-Díaz
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada (CSIC-UGR), Av.da de las Palmeras 4, 18100 Armilla, Spain; (A.L.G.); (C.I.S.-D.)
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (F.G.-V.); (R.S.-E.)
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
11
|
Rodrigo MJ, Cardiel MJ, Fraile JM, Mayoral JA, Pablo LE, Garcia-Martin E. Laponite for biomedical applications: An ophthalmological perspective. Mater Today Bio 2024; 24:100935. [PMID: 38239894 PMCID: PMC10794930 DOI: 10.1016/j.mtbio.2023.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Clay minerals have been applied in biomedicine for thousands of years. Laponite is a nanostructured synthetic clay with the capacity to retain and progressively release drugs. In recent years there has been a resurgence of interest in Laponite application in various biomedical areas. This is the first paper to review the potential biomedical applications of Laponite in ophthalmology. The introduction briefly covers the physical, chemical, rheological, and biocompatibility features of different routes of administration. After that, emphasis is placed on 1) drug delivery for antibiotics, anti-inflammatories, growth factors, other proteins, and cancer treatment; 2) bleeding prevention or treatment; and 3) tissue engineering through regenerative medicine using scaffolds in intraocular and extraocular tissue. Although most scientific research is not performed on the eye, both the findings and the new treatments resulting from that research are potentially applicable in ophthalmology since many of the drugs used are the same, the tissue evaluated in vitro or in vivo is also present in the eye, and the pathologies treated also occur in the eye. Finally, future prospects for this emerging field are discussed.
Collapse
Affiliation(s)
- Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| | - Maria J. Cardiel
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Jose M. Fraile
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jose A. Mayoral
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Biotech Vision SLP (spin-off Company), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| |
Collapse
|
12
|
Biswas A, Das B, Pal P, Ghosh A, Chattopadhyay N. Proton‐Conducting Hierarchical Composite Hydrogels Producing First Soft Memcapacitors with Switchable Memory. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202307618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 01/06/2025]
Abstract
AbstractPerpetual exigency for environment friendly clean energy and powerful soft electronics has elevated the research on hydrogels in past two decades. Hydrogels are the amplifiers of material properties using manipulation in structure–property relationship via simple, economic yet effective routes. Herein, a set of composite and hybrid hydrogels are developed by hierarchical assembling of clay nanosheets and surfactant micelles those divulge the first example of memcapacitor gels and offer exceptional proton conductivity (1.66–4.34 × 10–2 S cm−1) as a gel material. Further, Congo red, Eosin Y, and Orange G are used to hybridize one of the composites to achieve three hybrid hydrogels. Such hybridization is found to regulate the memristive function selectively from the coupled effect of memcapacitance from the composite. The composite hydrogel highlights its volatile memory with encouraging robustness under environmental conditions, established through various current–voltage (I–V) experiments. The electrochemical behaviors including the high proton conductivity are realized from impedance measurements. Material characterizations, experimental results, and in silico optimized structures rationalize composite/hybrid network formation, capacitive/memristive responses, and enhanced proton conduction in the fabricated composite superstructures. Proposed structural models demonstrate two orthogonally oriented structural encryptions to be accountable for the expressed bifunctionality in the hierarchically designed superstructures.
Collapse
Affiliation(s)
- Arnab Biswas
- Department of Chemistry Jadavpur University Jadavpur Kolkata WB 700 032 India
| | - Bikash Das
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Pulak Pal
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Aswini Ghosh
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata WB 700 032 India
| | - Nitin Chattopadhyay
- Department of Chemistry Jadavpur University Jadavpur Kolkata WB 700 032 India
| |
Collapse
|