1
|
Faisal MM, Gomaa E, Attia MS, Abdelnaby RM, Ibrahim AE, Al-Harrasi A, El Deeb S, Al Ashmawy AZG. Albumin-Based Nanoparticles with Factorial Design as a Promising Approach for Remodeled Repaglinide: Evidence from In Silico, In Vitro, and In Vivo Evaluations. Pharmaceutics 2025; 17:350. [PMID: 40143014 PMCID: PMC11946440 DOI: 10.3390/pharmaceutics17030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Hyperlipidemia is a silent threat lurking in the bloodstream of millions worldwide. The nano-based platform has emerged as a promising drug delivery technology. Repaglinide, an anti-diabetic drug, was investigated recently as an antihyperlipidemic candidate that could supersede the available antihyperlipidemic drugs. Our goal was to optimize albumin-based nanoparticles loaded with Repaglinide for parenteral delivery and conduct in silico and in vivo studies to explore the efficacy of Repaglinide for the management of hyperlipidemia along with its anti-diabetic effect. Methods: The impact of three independent factors, the albumin%, acetone volume, and glutaraldehyde/albumin, on the particle size, zeta potential, and entrapment efficiency was investigated. Results: The optimized formulation was spherical, homogenous of an average diameter (~181.86 nm) with a narrow size distribution, a zeta potential of -24.26 mV, and 76.37% as the EE%. The in vitro release of Repaglinide from nanoparticles showed a sustained release pattern for 168 h, with an initial burst release after 24 h, and was fitted to the Fickian diffusion mechanism. A molecular docking simulation showed a strong affinity to several protein targets, and the results were very promising, where Repaglinide gave a score of -7.70 Kcal/mol compared to Mevastatin (-6.71 Kcal/mol) and Atorvastatin (-8.36 Kcal/mol). On conducting in vivo studies on animal models, the optimized formula recorded a statistically significant decrease in the serum levels of total cholesterol, triglyceride, and low-density lipoproteins, with an increased high-density lipoprotein. Conclusions: This study suggested albumin nanoparticles as potential nanocarriers for the parenteral delivery of Repaglinide to ameliorate its antihyperlipidemic benefits, especially in diabetic patients.
Collapse
Affiliation(s)
- Mennatullah M. Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.M.F.); (E.G.); (M.S.A.)
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.M.F.); (E.G.); (M.S.A.)
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.M.F.); (E.G.); (M.S.A.)
| | - Rana M. Abdelnaby
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman;
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Brunswick, Germany
| | - Al Zahraa G. Al Ashmawy
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| |
Collapse
|
2
|
Attia HG, Elmataeeshy ME, Aleraky M, Saleh SR, Ghareeb DA, El Demellawy MA, El-Nahas HM, Ibrahim TM. The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative in-vivo studies in rats. J Microencapsul 2024; 41:576-600. [PMID: 39229806 DOI: 10.1080/02652048.2024.2395976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024]
Abstract
The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and in-vitro release were estimated. In-vitro pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with Cmax values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.
Collapse
Affiliation(s)
- Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Mohamed Aleraky
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
- Department of Clinical Pathology, Al-Azhar University, New Damietta, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
- Research Projects unit, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | - Maha A El Demellawy
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | | | - Tarek M Ibrahim
- Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Faisal MM, Gomaa E, Ibrahim AE, El Deeb S, Al-Harrasi A, Ibrahim TM. Verapamil-Loaded Cubosomes for Enhancing Intranasal Drug Delivery: Development, Characterization, Ex Vivo Permeation, and Brain Biodistribution Studies. AAPS PharmSciTech 2024; 25:95. [PMID: 38710921 DOI: 10.1208/s12249-024-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.
Collapse
Affiliation(s)
- Mennatullah M Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Brunswick, Germany.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Alyami MH, Musallam AA, Ibrahim TM, Mahdy MA, Elnahas HM, Aldeeb RA. The Exploitation of pH-Responsive Eudragit-Coated Mesoporous Silica Nanostructures in the Repurposing of Terbinafine Hydrochloride for Targeted Colon Cancer Inhibition: Design Optimization, In Vitro Characterization, and Cytotoxicity Assessment. Pharmaceutics 2023; 15:2677. [PMID: 38140018 PMCID: PMC10747614 DOI: 10.3390/pharmaceutics15122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Targeted drug delivery is achieving great success in cancer therapy due to its potential to deliver drugs directly to the action site. Terbinafine hydrochloride (TER) is a broad-spectrum anti-fungal drug that has been found to have some potential anti-tumor effects in the treatment of colon cancer. We aimed here to design and develop pH-sensitive Eudragit (Eud)-coated mesoporous silica nanostructures (MSNs) to control drug release in response to changes in pH. The diffusion-supported loading (DiSupLo) technique was applied for loading TER into the MSNs. The formulation was optimized by a D-optimal design, which permits the concurrent assessment of the influence of drug/MSN%, coat concentration, and MSN type on the drug entrapment efficiency (EE) and its release performance. The optimal formula displayed a high EE of 96.49%, minimizing the release in pH 1.2 to 16.15% and maximizing the release in pH 7.4 to 78.09%. The cytotoxicity of the optimal formula on the colon cancer cells HT-29 was higher than it was with TER alone by 2.8-fold. Apoptosis in cancer cells exposed to the optimum formula was boosted as compared to what it was with the plain TER by 1.2-fold and it was more efficient in arresting cells during the G0/G1 and S stages of the cell cycle. Accordingly, the repurposing of TER utilizing Eud/MSNs is a promising technique for targeted colon cancer therapy.
Collapse
Affiliation(s)
- Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Abeer A. Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud A. Mahdy
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hanan M. Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| |
Collapse
|
5
|
Syed A, Karwa P, Vemula KD, Salwa. Multifunctional nanoparticles encapsulating methotrexate and curcumin for holistic management of rheumatoid arthritis: in-vitro and pre-clinical assessment. Drug Dev Ind Pharm 2023; 49:536-549. [PMID: 37551958 DOI: 10.1080/03639045.2023.2245057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Bovine serum albumin (BSA) nanoparticles (BSA-MTX-CUR-NPs) encapsulating methotrexate (MTX) and curcumin (CUR) was developed with an aim to co-deliver the drugs at the inflamed joint so as to maximize the therapeutic efficacy and alleviate toxic side effects associated with MTX. METHODS Nanoparticle albumin-bound technology was used to formulate nanoparticles, followed by characterization for its particle size, polydispersity index, encapsulation efficiency, zeta potential, surface morphology, in-vitro drug release and drug release kinetics. Further, we investigated the pharmacokinetics and pharmacodynamics of the developed nanoparticles in the adjuvant-induced arthritis model. RESULTS BSA-MTX-CUR-NPs exhibited particle size of 163.05 ± 1.708 nm, polydispersity index of 0.195 ± 0.0024 and % encapsulation efficiency of 68.23 ± 0.640% for MTX and 75.71 ± 0.216% for CUR with controlled release pattern for both the drugs. The scanning electron microscopy revealed nanoparticles exhibited a spherical shape. DSC study confirmed the absence of incompatibility between the drugs and the excipients. Half-life and area under the curve were significantly higher for MTX in the nanoparticulate form in comparison to free MTX. Pharmacodynamic studies revealed that BSA-MTX-CUR-NPs possessed better disease-modifying effects in comparison to free MTX. CONCLUSION Hence, it can be concluded that albumin nanoparticles constitute a viable method for delivering MTX and CUR to inflamed joints simultaneously, because of the strong affinity of albumin and enhanced permeability and retention effect at the inflamed joint. This combinational therapy of MTX & CUR in nanoparticulate form has the potential for the holistic management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ayesha Syed
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India
| | - Preeti Karwa
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India
| | - Kusum Devi Vemula
- Department of Pharmaceutics, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal Academy of Higher Education, Manipal, Karnataka
| |
Collapse
|
6
|
Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs. Curr Pharm Des 2023; 29:2297-2312. [PMID: 37694786 DOI: 10.2174/1381612829666230911105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.
Collapse
Affiliation(s)
- Mohamed T Elsebay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gehan F Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|