1
|
Meertens M, Rosing H, Steeghs N, Beijnen J, Huitema A. Advancing Therapeutic Drug Monitoring for Oral Targeted Anticancer Drugs: From Hospital-Based Towards Home-Sampling. Biomed Chromatogr 2025; 39:e70056. [PMID: 40084678 PMCID: PMC11907759 DOI: 10.1002/bmc.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Home-sampling for therapeutic drug monitoring (TDM) for oral targeted anticancer drugs offers a promising alternative to traditional hospital-based sampling methods, though it presents challenges. This review aims to summarize the state-of-the-art of home-sampling methods for TDM and evaluates the analytical and clinical validation challenges. A comprehensive search was conducted across Embase, Medline, and Scopus. Eligible articles described analytical and/or clinical validation of home-sampling methods for oral targeted anticancer drugs. ASReview was used to process unique references and to identify relevant studies. Of the 39 included articles, 32 detailed on analytical validation experiments, while 27 covered clinical validation experiments. Dried blood spot and volumetric absorptive microsampling were the primary sampling methods. Key challenges were ensuring robust sample collection, sample pretreatment, hematocrit effects, and sample stability, which were generally thoroughly investigated. Clinical validation yielded promising results for most analytes, although external validation remains crucial for confirming reliability. Home-sampling methods for TDM of oral targeted anticancer drugs show promising results for clinical implementation. Methods for well-studied drugs may be clinically implemented immediately, while others require further external validation. Future research should address device-specific challenges and assess patient feasibility to facilitate the routine use of home-sampling in clinical practice.
Collapse
Affiliation(s)
- Marinda Meertens
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Hilde Rosing
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Neeltje Steeghs
- Department of Medical OncologyThe Netherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands
- Department of Medical OncologyUtrecht University Medical Centre, Utrecht UniversityUtrechtThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Clinical Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| |
Collapse
|
2
|
Meertens M, Kerssemakers N, de Vries N, Rosing H, Steeghs N, Beijnen JH, Huitema ADR. Clinical Application of Volumetric Absorptive Microsampling for Therapeutic Drug Monitoring of Oral Targeted Anticancer Drugs. Ther Drug Monit 2025:00007691-990000000-00325. [PMID: 39996568 DOI: 10.1097/ftd.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/11/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Therapeutic Drug Monitoring optimizes oral anticancer drug treatment by measuring plasma levels. Volumetric absorptive microsampling (VAMS) allows home sampling with a minimal blood sample. However, methods for converting whole blood into plasma are required to interpret these results. This study aimed to establish conversion methods for abiraterone, alectinib, cabozantinib, imatinib, olaparib, sunitinib, and their metabolites, while assessing the differences between venous and capillary blood. The feasibility of home sampling was also evaluated. METHODS Plasma and VAMS samples, both from venipuncture-collected whole blood tubes and from a finger prick, were collected from each patient. The VAMS samples were deemed comparable if their concentrations were within ±20% of each other for ≥2/3rd of the patients. The Passing-Bablok regression and conversion factor methods were tested for the plasma and VAMS finger prick samples. The estimated plasma concentrations using both methods were required to be within ±20% of the measured plasma concentrations for ≥2/3rd of the pairs. RESULTS Overall, 153 patients were enrolled in this study. Conversion methods were applied to the VAMS samples, and the acceptance criteria were met for alectinib-M4, cabozantinib, imatinib, N-desmethyl imatinib, olaparib, sunitinib, and N-desethyl sunitinib but not for abiraterone, D4A, or alectinib. The capillary and venous VAMS concentrations were similar, except for that of D4A. Patients were positive toward home sampling. CONCLUSIONS The established VAMS conversion methods for 7 out of 10 oral targeted anticancer drugs or metabolites met the acceptance criteria. Future studies need to validate the conversion methods with an independent cohort and integrate home sampling via VAMS to provide patients with an alternative to venipuncture at the outpatient clinic.
Collapse
Affiliation(s)
- Marinda Meertens
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Nikki Kerssemakers
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Niels de Vries
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Medical Oncology, Utrecht University Medical Centre, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; and
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
3
|
Poland DCW, Cobbaert CM. Blood self-sampling devices: innovation, interpretation and implementation in total lab automation. Clin Chem Lab Med 2025; 63:3-13. [PMID: 38910538 DOI: 10.1515/cclm-2024-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
The introduction of the vacuum tube in 1949 revolutionized blood collection, significantly improving sample quality and patient comfort. Over the past 75 years, laboratory diagnostics have evolved drastically, from manual to automated processes, reducing required test volumes by over 1,000 times. Despite these advancements, venous blood collection presents logistical challenges, including centralized scheduling and a large volume of biological waste due to the imbalance between the needed blood volume (often very little) and the collected volume (often in excess). The COVID-19 pandemic further emphasized the need for decentralized healthcare solutions and patient empowerment. Capillary blood collection, widely used in point-of-care testing, offers a promising alternative, particularly for patients facing frequently, or difficulties with, venous sampling. The Leiden University Medical Center in the Netherlands experienced a 15 % reduction in volume of laboratory tests during and after the pandemic, attributed to patient preference for local blood collection and testing. To address these challenges, self-sampling devices are emerging, empowering patients and streamlining sample logistics. However, challenges such as cost, transportation regulations, and sample volume adequacy persists. Robust devices tailored for total lab automation and sustainable practices are crucial for widespread adoption. Despite hurdles, the integration of self-sampling into diagnostic processes is inevitable, heralding a shift towards patient-centered, proactive healthcare. Practical recommendations include robust device design, ease of use, affordability, sustainability, sufficient quality and acceptability by seamless integration into laboratory workflows. Although obstacles remain, self-sampling represents the future of laboratory diagnostics, offering convenience, cost-effectiveness, interoperability and patient empowerment.
Collapse
Affiliation(s)
- Dennis C W Poland
- Department of Clinical Chemistry and Laboratory Medicine, 4501 Leiden University Medical Center , Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, 4501 Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
4
|
Lee HJ, Hwang J, Seo Y, Lee G, Lee HJ, Min H. Simultaneous detection of myostatin-targeting monoclonal antibodies in dried blood spots and plasma using liquid chromatography-tandem mass spectrometry with field asymmetric ion mobility spectrometry. J Pharm Biomed Anal 2025; 252:116518. [PMID: 39405785 DOI: 10.1016/j.jpba.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
Transforming growth factor-β superfamily members, such as myostatin, growth/differentiation factor 11, and activin A, negatively regulate skeletal muscle mass. Inhibitors targeting these cytokines or activin receptor type IIB have the potential to treat muscular diseases and enhance physical performance. However, because of their effects on muscle mass and potential misuse, they are strictly prohibited in sports. Given the high potential for misuse as a doping agent in sports, effective analytical methods for these prohibited antibodies targeting these specific cytokines or their receptor are critically needed. In this study, we aimed to develop and validate a multitarget method to detect the prohibited transforming growth factor-β superfamily-targeting monoclonal antibodies, such as landogrozumab, domagrozumab, and the activin receptor type IIB-targeting antibody, bimagrumab, in human plasma and dried blood spot (DBS) samples using liquid chromatography-tandem mass spectrometry. Antibodies were purified from both the DBS and plasma samples using protein G magnetic beads and field-asymmetric ion mobility spectrometry (FAIMS) to minimize interference, followed by liquid chromatography-tandem mass spectrometry analysis. The validation process included tests for specificity, selectivity, linearity, limit of detection (LOD), limit of identification, precision, recovery, carryover effect, and matrix effect. The LODs for the target antibodies were identical in both DBS and plasma samples at 0.1 µg/mL for landogrozumab heavy and light chains, as well as 0.25 µg/mL for the domagrozumab light chain and 0.25 µg/mL for the bimagrumab heavy chain. However, the heavy chain of domagrozumab exhibited an LOD of 0.5 µg/mL in DBS and 1 µg/mL in plasma. The analytical method demonstrated strong linearity, with R² values greater than 0.99 for both plasma and DBS, and no carryover effect. Precision (CV%) was below 15 % at both middle (1 or 5 µg/mL; specific to the heavy chain of domagrozumab in plasma) and high (10 µg/mL) concentrations and was less than 20 % at the LOD. The selectivity and specificity indicated no interference in the analysis of target mAbs in different blood samples. Recovery was 31.6-49.8 % for DBS and 51.4-85.3 % for plasma, with no significant matrix effect. This study provides an effective method for doping analysis and novel protein detection.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jiin Hwang
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoondam Seo
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gahyeon Lee
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hwa Jeong Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Divison of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
5
|
Cecchin E, Orleni M, Gagno S, Montico M, Peruzzi E, Roncato R, Gerratana L, Corsetti S, Puglisi F, Toffoli G, Cecchin E, Posocco B. Quantification of Letrozole, Palbociclib, Ribociclib, Abemaciclib, and Metabolites in Volumetric Dried Blood Spots: Development and Validation of an LC-MS/MS Method for Therapeutic Drug Monitoring. Int J Mol Sci 2024; 25:10453. [PMID: 39408783 PMCID: PMC11476960 DOI: 10.3390/ijms251910453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Therapeutic drug monitoring (TDM) may be beneficial for cyclin-dependent kinase 4/6 inhibitors (CDK4/6is), such as palbociclib, ribociclib, and abemaciclib, due to established exposure-toxicity relationships and the potential for monitoring treatment adherence. Developing a method for quantifying CDK4/6is, abemaciclib metabolites (M2, M20), and letrozole in dried blood spots (DBS) could be useful to enhance the feasibility of TDM. Thus, an optimized LC-MS/MS method was developed using the HemaXis DB10 device for volumetric (10 µL) DBS collection. Chromatographic separation was achieved using a reversed-phase XBridge BEH C18 column. Detection was performed with a triple quadrupole mass spectrometer, utilizing ESI source switching between negative and positive ionization modes and multiple reaction monitoring acquisition. Analytical validation followed FDA, EMA, and IATDMCT guidelines, demonstrating high selectivity, adequate sensitivity (LLOQ S/N ≥ 30), and linearity (r ≥ 0.997). Accuracy and precision met acceptance criteria (between-run: accuracy 95-106%, CV ≤ 10.6%). Haematocrit independence was confirmed (22-55%),with high recovery rates (81-93%) and minimal matrix effects (ME 0.9-1.1%). The stability of analytes under home-sampling conditions was also verified. Clinical validation supports DBS-based TDM as feasible, with conversion models developed for estimating plasma concentrations (the reference for TDM target values) of letrozole, abemaciclib, and its metabolites. Preliminary data for palbociclib and ribociclib are also presented.
Collapse
Affiliation(s)
- Eleonora Cecchin
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Elena Peruzzi
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Lorenzo Gerratana
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Serena Corsetti
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
| | - Fabio Puglisi
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| |
Collapse
|
6
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
7
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
8
|
Yasu T, Nishijima R, Ikuta R, Shirota M, Iwase H. Development of a simple high-performance liquid chromatography-ultraviolet detection method for olaparib in patients with ovarian cancer. Drug Discov Ther 2024; 17:428-433. [PMID: 38044120 DOI: 10.5582/ddt.2023.01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Olaparib is a small-molecule inhibitor of poly(ADP)-ribose polymerase (PARP) used as maintenance therapy for recurrent ovarian cancer and newly diagnosed advanced ovarian cancer after initial chemotherapy. An exposure-toxicity correlation has been reported between the probability of anemia, a common adverse event associated with olaparib, and the steady-state minimum plasma concentration (Cmin) as well as the predicted maximum plasma concentration (Cmax). On the other hand, olaparib exhibits high interpatient variability with regard to the area under the concentration-time curve, Cmax, and Cmin. Therefore, we developed a simple and sensitive assay based on high-performance liquid chromatography with ultraviolet light (HPLC-UV) for the therapeutic drug monitoring of olaparib. The analysis was performed on an octadecylsilyl column with a mobile phase consisting of 0.5% KH2PO4 (pH 4.5) and acetonitrile (71:29, v/v), at a flow rate of 0.8 mL/min. Olaparib and an internal standard (imatinib) were well separated from the co-extracted material, with retention times of 13.6 and 11.5 min, respectively. The calibration curve for olaparib showed linearity over the concentration range of 0.10-10.0 μg/mL (r2 = 0.9998). The intra- and inter- day validation coefficients ranged from 1.79 to 4.13% and 1.37 to 3.55%, respectively. Measurement accuracy ranged from - 6.07 to 3.26%, with a recovery rate of more than 91.06%. The developed method was then applied to evaluate the plasma olaparib concentrations in patients with ovarian cancer. Our findings demonstrate that HPLC-UV is an economical, simple, and sensitive method for clinical application and holds promise for the effective drug monitoring of olaparib during ovarian cancer treatment.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Tokyo, Japan
- Department of Pharmacy, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| | - Ryosuke Nishijima
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Tokyo, Japan
| | - Risa Ikuta
- Department of Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| | - Mikio Shirota
- Department of Pharmacy, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| | - Haruko Iwase
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| |
Collapse
|