1
|
Tomalia DA. Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences. Pharmaceutics 2024; 16:1530. [PMID: 39771509 PMCID: PMC11676903 DOI: 10.3390/pharmaceutics16121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025] Open
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences.
Collapse
Affiliation(s)
- Donald A. Tomalia
- The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA; ; Tel.: +1-989-317-3737
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Dehdari M, Jazi B, Khosravi F. A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation. PLASMONICS 2024. [DOI: 10.1007/s11468-024-02447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 01/06/2025]
|
3
|
Olawumi MA, Oladapo BI, Olugbade TO, Omigbodun FT, Olawade DB. AI-Driven Data Analysis of Quantifying Environmental Impact and Efficiency of Shape Memory Polymers. Biomimetics (Basel) 2024; 9:490. [PMID: 39194469 DOI: 10.3390/biomimetics9080490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
This research investigates the environmental sustainability and biomedical applications of shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The objectives include comparing the carbon footprint, embodied energy, and water consumption of SMPs with traditional materials such as metals and conventional polymers and evaluating their potential in medical implants, drug delivery systems, and tissue engineering. The methodology involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable insights into the environmental and functional performance of SMPs. Thermomechanical modeling, phase transformation kinetics, and heat transfer analyses are employed to understand the behavior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably lower environmental impacts than traditional materials, reducing greenhouse gas emissions by approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers also demonstrate superior functionality and adaptability in biomedical applications due to their ability to change shape in response to external stimuli. The study concludes that SMPs are promising sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize healthcare manufacturing processes and product life cycles, promoting sustainable and efficient medical practices.
Collapse
Affiliation(s)
- Mattew A Olawumi
- Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK
| | - Bankole I Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | | | - Francis T Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| |
Collapse
|
4
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Habeeb M, You HW, Umapathi M, Ravikumar KK, Hariyadi, Mishra S. Strategies of Artificial intelligence tools in the domain of nanomedicine. J Drug Deliv Sci Technol 2024; 91:105157. [DOI: 10.1016/j.jddst.2023.105157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Miao Y, Du H, Zhang W, Yang D, Tang K, Fang Q, Zhang J. Insights into tumor size-dependent nanoparticle accumulation using deformed organosilica nanoprobes. MATERIALS CHEMISTRY FRONTIERS 2024; 8:3321-3330. [DOI: 10.1039/d4qm00482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Deformed organosilica nanoprobes (CDPF) exhibit enhanced accumulation within larger tumors, highlighting the pivotal role of the tumor microenvironment in the optimization of nanoparticle-based therapeutic strategies.
Collapse
Affiliation(s)
- Yuchen Miao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hengda Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Wenqing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|