1
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Hawley JJ, Allen SL, Thompson DM, Schwarz AJ, Tranquart FJM. Commercially Available Ultrasound Contrast Agents: Factors Contributing to Favorable Outcomes With Ultrasound-Mediated Drug Delivery and Ultrasound Localization Microscopy Imaging. Invest Radiol 2025:00004424-990000000-00326. [PMID: 40262129 DOI: 10.1097/rli.0000000000001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
ABSTRACT Ultrasound contrast agents (UCAs) are microbubbles comprising an inert gas core stabilized by an encapsulating shell, which serves to increase the signal-to-noise ratio of blood-to-tissue in diagnostic ultrasound imaging. More recently, research has investigated the use of UCAs to combine both diagnostics and therapeutic outcomes in an amalgamated approach, designated 'theranostics.' Two examples of theranostic based approaches include the use of super-resolution imaging with ultrasound localized microscopy (ULM) and ultrasound-mediated drug delivery (UMDD). Both ULM and UMDD have been shown to have the potential to improve both patient care and clinical outcomes. Currently, there are 4 commercially available global UCAs licensed for clinical use. The physico-chemical properties of each of these UCAs influence its potential theranostic efficacy. Because of differences in their composition and/or manufacturing processes, each UCA has different characteristics that contribute to different in vivo resonance behavior, which in turn influences their effective clinical applications. This review highlights the key physico-chemical characteristic differences of the 4 commercially available contrast agents, with specific emphasis on their gaseous core, shell composition, and microbubble volume distribution, while providing novel insights into their benefits for supporting emerging clinical technologies, specifically ULM and UMDD.
Collapse
Affiliation(s)
- Joshua J Hawley
- From the GE HealthCare Pharmaceutical Diagnostics, Chalfont St. Giles, UK (J.J.H., S.L.A., D.M.T., A.J.S.); Chesterfield Royal Hospital Foundation NHS Trust, UK (J.J.H.); and Advice-US, Lyon, Auvergne-Rhône Alpes, France (F.J.M.T.)
| | | | | | | | | |
Collapse
|
3
|
Blöck J, Li H, Collado-Lara G, Kooiman K, Rix A, Chen J, Hark C, Radermacher H, Porte C, Kiessling F. The Compression-Dominated Ultrasound Response of Poly( n-butyl cyanoacrylate) Hard-Shelled Microbubbles Induces Significant Sonoporation and Sonopermeation Effects In Vitro. ACS APPLIED BIO MATERIALS 2025; 8:1240-1250. [PMID: 39900350 PMCID: PMC11836932 DOI: 10.1021/acsabm.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
The process of locally increasing the permeability of cell membranes or cell layers is referred to as sonoporation or sonopermeation, respectively, and opens up perspectives for drug delivery in cancer treatment by facilitating enhanced local drug accumulation. These effects are mediated by ultrasound-activated microbubbles in close proximity to cells. Here, the selection of ultrasound settings according to the intended effect on the biological tissue remains a challenge, especially for broadly size-distributed microbubbles, which show a heterogeneous response to ultrasound. For this purpose, we have analyzed the general response of narrower size-distributed poly(n-butyl cyanoacrylate) hard-shelled microbubbles to ultrasound via ultra-high-speed imaging and evaluated their ability to stimulate sonoporation and sonopermeation in vitro compared to lipid soft-shelled microbubbles. Ultra-high-speed imaging of hard-shelled microbubbles revealed either a compression-dominated or compression-only response at peak negative acoustic pressures higher than 165 kPa and an onset of bursting at 500 kPa. The in vitro experiments demonstrated that the hard-shelled microbubbles induced significant sonoporation and sonopermeation effects, also when only compressing at 300 kPa peak neagtive pressure. Compared to soft-shelled microbubbles, the effects were less prominent, which was attributed to differences in their ultrasound responses and size distributions. This in vitro validation of hard-shelled microbubbles qualifies them for future in vivo applications, which would benefit from their narrow size distribution, thereby allowing more control of their therapeutic effect by suitably adjusting the ultrasound parameters.
Collapse
Affiliation(s)
- Julia Blöck
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Hongchen Li
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Gonzalo Collado-Lara
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Klazina Kooiman
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Anne Rix
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Junlin Chen
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Christopher Hark
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Harald Radermacher
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Céline Porte
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| |
Collapse
|
4
|
Chuang CF, Lin CW, Yeh CK. Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes. ULTRASONICS SONOCHEMISTRY 2025; 112:107182. [PMID: 39631357 PMCID: PMC11655813 DOI: 10.1016/j.ultsonch.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.2 ± 0.3 and 1.4 ± 0.1 μm, respectively), a 2-fold increase in drug loading, and an 18 % reduction in leakage after 2 h at 37℃. Under 1 MHz US with a 100 ms pulse repetition interval (PRI), 1000 cycles, 5-minute duration, and 550 kPa acoustic pressure, CPT-MBs undergo inertial cavitation, while DOX-MBs undergo stable cavitation. Drug particles released from these MBs under US-induced cavitation were analyzed using dynamic light scattering, NanoSight, cryo-electron microscopy, and density gradient ultracentrifugation. Results showed that CPT-MBs mainly release free CPT, while DOX-MBs release multilayered DOX-lipid aggregates. The cytotoxicity to C6 cells induced by US-triggered cavitation of these two types of MBs also differed. DOX-lipid aggregates delayed initial uptake, leading to less pronounced short-term (2 h) effects compared to the rapid release of free CPT from CPT-MBs. These findings underscore the need to optimize drug delivery strategies by fine-tuning MB composition and US parameters to control drug release kinetics and achieve the best tumoricidal outcomes.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Ning R, Acree B, Wu M, Gao Y. Microfluidic Monodispersed Microbubble Generation for Production of Cavitation Nuclei. MICROMACHINES 2024; 15:1531. [PMID: 39770284 PMCID: PMC11678649 DOI: 10.3390/mi15121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Microbubbles, acting as cavitation nuclei, undergo cycles of expansion, contraction, and collapse. This collapse generates shockwaves, alters local shear forces, and increases local temperature. Cavitation causes severe changes in pressure and temperature, resulting in surface erosion. Shockwaves strip material from surfaces, forming pits and cracks. Prolonged cavitation reduces the mechanical strength and fatigue life of materials, potentially leading to failure. Controlling bubble size and generating monodispersed bubbles is crucial for accurately modeling cavitation phenomena. In this work, we generate monodispersed microbubbles with controllable size using a novel and low-cost microfluidic method. We created an innovative T-junction structure that controls the two-phase flow for tiny, monodispersed bubble generation. Monodisperse microbubbles with diameters below one-fifth of the channel width (W = 100 µm) are produced due to the controlled pressure gradient. This microstructure, fabricated by a CNC milling technique, produces 20 μm bubbles without requiring high-resolution equipment and cleanroom environments. Bubble size is controlled with gas and liquid pressure ratio and microgeometry. This microbubble generation method provides a controllable and reproducible way for cavitation research.
Collapse
Affiliation(s)
| | | | | | - Yuan Gao
- Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA; (R.N.); (B.A.); (M.W.)
| |
Collapse
|
6
|
Harpster SL, Piñeiro AM, Wong JY. Methods for Rapid Characterization of Tunable Microbubble Formulations. Bioengineering (Basel) 2024; 11:1224. [PMID: 39768042 PMCID: PMC11673760 DOI: 10.3390/bioengineering11121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
To optimize microbubble formulations for clinical applications, the size distribution, concentration, and acoustic intensity must be rapidly measurable to allow for the successful iteration of microbubble design. In this paper, a comprehensive method was developed to compare microbubble formulations with different lipid shell compositions using optical and acoustic methods of measurement to collect the size distribution, concentration, and mean scattering intensity. An open-source ImageJ macro code was modified for the selective counting and sizing of brightfield microbubble images. A high-throughput agarose phantom was designed to collect multiple scattering reflections of microbubble samples to estimate the echogenicity of each microbubble solution. The information contained in the size distribution and concentration, combined with the instantaneous scattering power, can identify modifications needed for prototyping specific microbubble formulations.
Collapse
Affiliation(s)
- Savannah L. Harpster
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
| | - Alexandra M. Piñeiro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
- Division of Materials Science & Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Wu M, Liao W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6342. [PMID: 39409397 PMCID: PMC11478462 DOI: 10.3390/s24196342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking drug carriers (e.g., microbubble), acoustic trap holds promise for increasing MRI-guided microbubbles (MBs) accumulation in target microvessels, improving drug carrier concentration. However, accurate trap generation remains challenging due to complex ultrasound propagation in tissues. Moreover, the MBs' short lifetime demands high computation efficiency for trap position adjustments based on real-time MRI-guided carrier monitoring. To this end, we propose a machine learning-based model to modulate the transducer array. Our model delivers accurate prediction of both time-of-flight (ToF) and pressure amplitude, achieving low average prediction errors for ToF (-0.45 µs to 0.67 µs, with only a few isolated outliers) and amplitude (-0.34% to 1.75%). Compared with the existing methods, our model enables rapid prediction (<10 ms), achieving a four-order of magnitude improvement in computational efficiency. Validation results based on different transducer sizes and penetration depths support the model's adaptability and potential for future ultrasound treatments.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Wentao Liao
- Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen 518005, China;
| |
Collapse
|
9
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
10
|
van den Broek MRP, Versluis M, van den Berg A, Segers T. Functionalized monodisperse microbubble production: microfluidic method for fast, controlled, and automated removal of excess coating material. MICROSYSTEMS & NANOENGINEERING 2024; 10:120. [PMID: 39214967 PMCID: PMC11364838 DOI: 10.1038/s41378-024-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Functionalized monodisperse microbubbles have the potential to boost the sensitivity and efficacy of molecular ultrasound imaging and targeted drug delivery using bubbles and ultrasound. Monodisperse bubbles can be produced in a microfluidic flow focusing device. However, their functionalization and sequential use require removal of the excess lipids from the bubble suspension to minimize the use of expensive ligands and to avoid competitive binding and blocking of the receptor molecules. To date, excess lipid removal is performed by centrifugation, which is labor intensive and challenging to automate. More importantly, as we show, the increased hydrostatic pressure during centrifugation can reduce bubble monodispersity. Here, we introduce a novel automated microfluidic 'washing' method. First, bubbles are injected in a microfluidic chamber 1 mm in height where they are left to float against the top wall. Second, lipid-free medium is pumped through the chamber to remove excess lipids while the bubbles remain located at the top wall. Third, the washed bubbles are resuspended and removed from the device into a collection vial. We demonstrate that the present method can (i) reduce the excess lipid concentration by 4 orders of magnitude, (ii) be fully automated, and (iii) be performed in minutes while the size distribution, functionality, and acoustic response of the bubbles remain unaffected. Thus, the presented method is a gateway to the fully automated production of functionalized monodisperse microbubbles.
Collapse
Affiliation(s)
- M R P van den Broek
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - M Versluis
- Physics of Fluids Group, University of Twente, Enschede, The Netherlands
| | - A van den Berg
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - T Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
11
|
Shen Q, Li Z, Wang Y, Meyer MD, De Guzman MT, Lim JC, Xiao H, Bouchard RR, Lu GJ. 50-nm Gas-Filled Protein Nanostructures to Enable the Access of Lymphatic Cells by Ultrasound Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307123. [PMID: 38533973 PMCID: PMC11550859 DOI: 10.1002/adma.202307123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
Affiliation(s)
- Qionghua Shen
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Zongru Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | - Marc T De Guzman
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Janie C Lim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Han Xiao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- SynthX Center, Rice University, Houston, TX, 77005, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J Lu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
12
|
Navarro-Becerra JA, Castillo JI, Borden MA. Effect of Poly(ethylene glycol) Configuration on Microbubble Pharmacokinetics. ACS Biomater Sci Eng 2024; 10:3331-3342. [PMID: 38600786 DOI: 10.1021/acsbiomaterials.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Microbubbles (MBs) hold substantial promise for medical imaging and therapy; nonetheless, knowledge gaps persist between composition, structure, and in vivo performance, especially with respect to pharmacokinetics. Of particular interest is the role of the poly(ethylene glycol) (PEG) layer, which is thought to shield the MB against opsonization and rapid clearance but is also known to cause an antibody response upon multiple injections. The goal of this study was, therefore, to elucidate the role of the PEG layer in circulation persistence of MBs in the naïve animal (prior to an adaptive immune response). Here, we directly observe the number and size of individual MBs obtained from blood samples, unifying size and concentration into the microbubble volume dose (MVD) parameter. This approach enables direct evaluation of the pharmacokinetics of intact MBs, comprising both the lipid shell and gaseous core, rather than separately assessing the lipid or gas components. We examined the in vivo circulation persistence of 3 μm diameter phospholipid-coated MBs with three different mPEG2000 content: 2 mol % (mushroom), 5 mol % (intermediate), and 10 mol % (brush). MB size and concentration in the blood were evaluated by a hemocytometer analysis over 30 min following intravenous injections of 20 and 40 μL/kg MVD in Sprague-Dawley rats. Interestingly, pharmacokinetic analysis demonstrated that increasing PEG concentration on the MB surface resulted in faster clearance. This was evidenced by a 1.6-fold reduction in half-life and area under the curve (AUC) (p < 0.05) in the central compartment. Conversely, the AUC in the peripheral compartment increased with PEG density, suggesting enhanced MB trapping by the mononuclear phagocyte system. This was supported by an in vitro assay, which showed a significant rise in complement C3a activation with a higher PEG content. In conclusion, a minimal PEG concentration on the MB shell (mushroom configuration) was found to prolong circulation and mitigate immunogenicity.
Collapse
Affiliation(s)
- J Angel Navarro-Becerra
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jair I Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Dhara P, Shah N, Sundaram V, Srivastava A, Solovev AA, Mei Y, Gorin DA, Dey KK. Influence of protein nativity on the stability of bovine serum albumin coated microbubbles. iScience 2024; 27:109286. [PMID: 38482489 PMCID: PMC10933459 DOI: 10.1016/j.isci.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 11/02/2024] Open
Abstract
Protein-coated microbubbles have become one of the emerging platforms in biomedical research as theranostic agents. In recent years, microbubbles have been extensively used as ultrasound contrast agents and carriers of molecular cargoes, pertaining to which several studies have focused on tuning the properties of these bubbles to achieve a higher degree of biocompatibility and extended stability. Synthesis of microbubbles has so far been traditionally carried out with pre-heated proteins like bovine serum albumin (BSA) as shell coatings, owing to the ease in making BSA crosslinked structures through disulfide bridge formation. We, however, have performed experiments to demonstrate that air core microbubbles formed with native BSA are more stable compared with those formed using denatured BSA. The experimental observations have been supported with analytical modeling and computational studies, which offer insights into the effect of BSA conformation in stabilizing the microbubbles shells and prolonging their lifetimes.
Collapse
Affiliation(s)
- Palash Dhara
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Niyati Shah
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | | | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433 P.R. China
| | - Dmitry A. Gorin
- Center for Photonics Sciences and Engineering, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
14
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
15
|
Rastegar G, Salman MM, Sirsi SR. Remote Loading: The Missing Piece for Achieving High Drug Payload and Rapid Release in Polymeric Microbubbles. Pharmaceutics 2023; 15:2550. [PMID: 38004529 PMCID: PMC10675060 DOI: 10.3390/pharmaceutics15112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The use of drug-loaded microbubbles for targeted drug delivery, particularly in cancer treatment, has been extensively studied in recent years. However, the loading capacity of microbubbles has been limited due to their surface area. Typically, drug molecules are loaded on or within the shell, or drug-loaded nanoparticles are coated on the surfaces of microbubbles. To address this significant limitation, we have introduced a novel approach. For the first time, we employed a transmembrane ammonium sulfate and pH gradient to load doxorubicin in a crystallized form in the core of polymeric microcapsules. Subsequently, we created remotely loaded microbubbles (RLMBs) through the sublimation of the liquid core of the microcapsules. Remotely loaded microcapsules exhibited an 18-fold increase in drug payload compared with physically loaded microcapsules. Furthermore, we investigated the drug release of RLMBs when exposed to an ultrasound field. After 120 s, an impressive 82.4 ± 5.5% of the loaded doxorubicin was released, demonstrating the remarkable capability of remotely loaded microbubbles for on-demand drug release. This study is the first to report such microbubbles that enable rapid drug release from the core. This innovative technique holds great promise in enhancing drug loading capacity and advancing targeted drug delivery.
Collapse
Affiliation(s)
| | | | - Shashank R. Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (G.R.); (M.M.S.)
| |
Collapse
|
16
|
Helfield B, Sirsi S, Kwan J, Gray M. Cavitation-Enhanced Drug Delivery and Immunotherapy. Pharmaceutics 2023; 15:2207. [PMID: 37765176 PMCID: PMC10534476 DOI: 10.3390/pharmaceutics15092207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Welcome to this special issue on Cavitation-Enhanced Drug Delivery and Immunotherapy-a rapidly evolving area that has been buoyed in recent years by the development of methods harnessing the activity of ultrasound-stimulated bubbles known as cavitation [...].
Collapse
Affiliation(s)
- Brandon Helfield
- Department of Physics, Concordia University, Montreal, QC H3G 1M8, Canada
- Department of Biology, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Shashank Sirsi
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Michael Gray
- Biomedical Ultrasonics, Biotherapies and Biopharmaceuticals Laboratory, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|