1
|
Wang W, Liu H, Guo Z, Hu Z, Wang K, Leng Y, Yuan C, Li Z, Ge X. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics (Basel) 2024; 9:408. [PMID: 39056849 PMCID: PMC11274689 DOI: 10.3390/biomimetics9070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, titanium and its alloys have emerged as the predominant metallic biomaterials for orthopedic implants. Nonetheless, the relatively high post-operative infection rate (2-5%) exacerbates patient discomfort and imposes significant economic costs on society. Hence, urgent measures are needed to enhance the antibacterial properties of titanium and titanium alloy implants. The titanium dioxide nanotube array (TNTA) is gaining increasing attention due to its topographical and photocatalytic antibacterial properties. Moreover, the pores within TNTA serve as excellent carriers for chemical ion doping and drug loading. The fabrication of TNTA on the surface of titanium and its alloys can be achieved through various methods. Studies have demonstrated that the electrochemical anodization method offers numerous significant advantages, such as simplicity, cost-effectiveness, and controllability. This review presents the development process of the electrochemical anodization method and its applications in synthesizing TNTA. Additionally, this article systematically discusses topographical, chemical, drug delivery, and combined antibacterial strategies. It is widely acknowledged that implants should possess a range of favorable biological characteristics. Clearly, addressing multiple needs with a single antibacterial strategy is challenging. Hence, this review proposes systematic research into combined antibacterial strategies to further mitigate post-operative infection risks and enhance implant success rates in the future.
Collapse
Affiliation(s)
- Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Leng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
2
|
Wu H, Jiang X, Dong Z, Fan Q, Huang J, Liu H, Chen L, Li Z, Ming L. New insights into the influence of encapsulation materials on the feasibility of ultrasonic-assisted encapsulation of Mosla chinensis essential oil. ULTRASONICS SONOCHEMISTRY 2024; 103:106787. [PMID: 38310739 PMCID: PMC10862064 DOI: 10.1016/j.ultsonch.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The study aimed to estimate the feasibility of α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) to encapsulate Mosla chinensis essential oil (EO) by ultrasonic-assisted method. The physical properties variations, stabilization mechanisms, and formation processes of the inclusion complexes (ICs) were investigated using experimental methods, molecular docking, and molecular dynamics (MD) simulation. Scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gas chromatography-mass spectrometry showed that the ICs were successfully prepared, which differentially improved the thermal stability and retained the chemical composition of EO. The dissolution profile showed that the Peppas model can be used to describe the diffuse release mechanism of EO. Finally, molecular docking and MD simulation theoretically confirmed the interaction and conformational changes of carvacrol (the main active component of Mosla chinensis EO) inside the cavity of CDs. The results indicate that hydrogen bonding was the primary driving force for the carvacrol spontaneous access to the cavity. Further, a binding dynamic balance occurs between carvacrol and β-CD, whereas a bind and away dynamic balance occurs in the IC between carvacrol and α-CD, γ-CD. The comprehensive results show that the medium cavity size of β-CD is a suitable host molecule for Mosla chinensis EO of encapsulation, release, and stabilization. A combination of experimental and theoretical calculations is useful for the pinpoint targeted design and optimization of CD molecular encapsulation of small entity molecules. β-CD was rationally screened as a better candidate for stabilizing EO, which provides an option for a meaningful path to realistic EO applications.
Collapse
Affiliation(s)
- Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Xiaoxia Jiang
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Lihua Chen
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China; Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| |
Collapse
|