1
|
Muge Q, Qing Y, Bao W, Bao X, Gaowa A, Chen L. LncRNA CCAT1 decreases the sensitivity to doxorubicin in lung cancer cells by regulating miR-181a/CPEB2 axis. Med Oncol 2025; 42:109. [PMID: 40089944 DOI: 10.1007/s12032-025-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Recently, long non-coding RNAs have gained an increasing amount of attention in treating lung cancer. However, a full understanding of how CCAT1 lncRNA works against proliferation is not yet available. Therefore, we assess the impact of CCAT1 on the lung cancer cell proliferation, apoptosis, and doxorubicin (DOX) sensitivity, and the involvement of miR-181a/CPEB2 pathway. For this purpose, lung cancer A549 cells were exposed to siRNA against CCAT1 and DOX and cell viability were measured by MTT assay. ELISA was used to evaluate cell apoptosis. The protein and mRNA expression levels of apoptotic markers, miR-181a and CPEB2 were measured by western blot and qRT-PCR. Knock-downing CCAT1 inhibited the cell viability of A549 cells. In addition, si-CCAT1 treatment increased apoptosis in both cell lines via modulating the anti- and pro-apoptotic markers. Si-CCAT1 increased the levels miR-181a and decreased CPEB2 in A549 cells. In conclusion, our study has provided strong evidence that lncRNA CCAT1 decreased the sensitivity to doxorubicin in lung cancer cells by regulating the miR-181a/CPEB2 axis.
Collapse
Affiliation(s)
- Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Yu Qing
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Wenshan Bao
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Xiangrong Bao
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Arong Gaowa
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Lanying Chen
- National Engineering Research Center of Traditional Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Jian Y, Li Y, Zhou Y, Mu W. Pollutants in Microenvironmental Cellular Interactions During Liver Inflammation Cancer Transition and the Application of Multi-Omics Analysis. TOXICS 2025; 13:163. [PMID: 40137490 PMCID: PMC11945810 DOI: 10.3390/toxics13030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
This study categorizes pollutant-induced inflammation-cancer transition into three stages: non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and hepatocellular carcinoma (HCC). It systematically reveals the temporal heterogeneity of pollutant-induced liver damage. The findings indicate that pollutants not only directly damage hepatocytes but also modulate key cells in the immune microenvironment, such as hepatic stellate cells (HSCs) and Kupffer cells, thereby amplifying inflammatory and fibrotic responses, ultimately accelerating the progression of HCC. Mechanistically, in the early stage (NAFLD), pollutants primarily cause hepatocyte injury through oxidative stress and lipid metabolism dysregulation. During the fibrosis stage, pollutants promote liver fibrosis by inducing extracellular matrix accumulation, while in the HCC stage, they drive tumorigenesis via activation of the Wnt/β-catenin pathway and p53 inactivation. Through multi-omics analyses, this study identifies critical pathogenic molecules and signaling pathways regulated by pollutants, providing new insights into their pathogenic mechanisms, potential biomarkers, and therapeutic targets. These findings offer valuable guidance for the development of diagnostic and therapeutic strategies for liver diseases and the formulation of environmental health risk prevention measures.
Collapse
Affiliation(s)
| | | | | | - Wei Mu
- School of Public Health, Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.J.); (Y.L.); (Y.Z.)
| |
Collapse
|
3
|
Zhu Y, Xu W, He Y, Yang W, Song S, Wen C. Therapeutic implications of endoplasmic reticulum stress gene CCL3 in cervical squamous cell carcinoma. Cell Biol Toxicol 2025; 41:47. [PMID: 39976849 PMCID: PMC11842515 DOI: 10.1007/s10565-024-09949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/20/2024] [Indexed: 02/23/2025]
Abstract
This study investigated ERS-related gene expressions in CESC, identifying two molecular subtypes, P1 and P2, and constructing a precise prognostic model based on these subtypes. TCGA's whole-genome expression profiles were used to recognize these subtypes through the ConsensusClusterPlus method, further refining prognostic models with univariate and Lasso Cox regression analyses validated by the GSE39001 dataset. The study analyzed the expression distribution of ERS marker genes within T cell subgroups using scRNA-seq data (GSE168652), highlighting T cell diversity. The critical role of the CCL3 gene in prognostic models was examined explicitly in CD8 + T cells from healthy individuals and CESC patients. Elevated CCL3 levels were observed in patients' CD8 + T cells compared to healthy controls. Functional experiments involving CCL3 knockdown and overexpression in HeLa and SiHa CESC cell lines were conducted to investigate its impact on cell proliferation, migration, and invasion. These findings were subsequently validated in a nude mouse model. The results demonstrated that suppressing CCL3 inhibited cell proliferation, migration, and invasion significantly, while its overexpression promoted these processes. In the mouse model, CCL3 silencing reduced tumor growth and decreased Ki-67 labeling within the tumor tissues, indicating the therapeutic potential of targeting CCL3 in CESC treatment, possibly through CD8 + T cell regulation. This study contributes new prognostic assessment tools and personalized treatment options for CESC patients, paving the way for more targeted therapies in CESC by discovering the CCL3 gene, presenting significant clinical implications.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Wei Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Wenjuan Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyue Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China.
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Huo C, Kuo Y, Lin C, Shiah S, Li C, Huang S, Chen J, Wang W, Kung H, Chuu C. The miRNAs 203a/210-3p/5001-5p regulate the androgen/androgen receptor/YAP-induced migration in prostate cancer cells. Cancer Med 2024; 13:e70106. [PMID: 39149855 PMCID: PMC11327718 DOI: 10.1002/cam4.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) patients with elevated level of androgen receptor (AR) correlate with higher metastatic incidence. Protein expression of AR and its target gene prostate-specific antigen (PSA) are elevated in metastatic prostate tumors as compared to organ-confined tumors. Androgen treatment or elevation of AR promotes metastasis of PCa in cell culture and murine model. However, under androgen depleted condition, AR suppressed cell mobility and invasiveness of PCa cells. Androgen deprivation therapy in PCa patients is associated with higher risk of cancer metastasis. We therefore investigated the dual roles of AR and miRNAs on PCa metastasis. METHODS The PC-3AR (PC-3 cells re-expressing AR) and LNCaP cells were used as PCa cell model. Transwell migration and invasion assay, wound-healing assay, zebrafish xenotransplantation assay, and zebrafish vascular exit assay were used to investigate the role of AR and androgen on PCa metastasis. Micro-Western Array, co-immunoprecipitation and Immunofluorescence were applied to dissect the molecular mechanism lying underneath. The miRNA array, miRNA inhibitors or plasmid, and chromatin immunoprecipitation assay were used to study the role of miRNAs on PCa metastasis. RESULTS In the absence of androgen, AR repressed the migration and invasion of PCa cells. When androgen was present, AR stimulated the migration and invasion of PCa cells both in vitro and in zebrafish xenotransplantation model. Androgen increased phospho-AR Ser81 and yes-associated protein 1 (YAP), decreased phospho-YAP Ser217, and altered epithelial-mesenchymal transition (EMT) proteins in PCa cells. Co-IP assay demonstrated that androgen augmented the interaction between YAP and AR in nucleus. Knockdown of YAP or treatment with YAP inhibitor abolished the androgen-induced migration and invasion of PCa cells, while overexpression of YAP showed opposite effects. The miRNA array revealed that androgen decreased hsa-miR-5001-5p but increased hsa-miR-203a and hsa-miR-210-3p in PC-3AR cells but not PC-3 cells. Treatment with inhibitors targeting hsa-miR-203a/hsa-miR-210-3p, or overexpression of hsa-miR-5001-5p decreased YAP expression as well as suppressed the androgen-induced migration and invasion of PCa cells. Chromatin immunoprecipitation (ChIP) assay demonstrated that AR binds with promoter region of has-miR-210-3p in the presence of androgen. CONCLUSIONS Our observations indicated that miRNAs 203a/210-3p/5001-5p regulate the androgen/AR/YAP-induced PCa metastasis.
Collapse
Affiliation(s)
- Chieh Huo
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
| | - Ying‐Yu Kuo
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
| | - Ching‐Yu Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| | - Shine‐Gwo Shiah
- National Institute of Cancer ResearchNational Health Research InstitutesZhunanTaiwan
| | - Chia‐Yang Li
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shu‐Pin Huang
- Department of Urology, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jen‐Kun Chen
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunanTaiwan
| | - Wen‐Ching Wang
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsing‐Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| |
Collapse
|
5
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
6
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|