1
|
Zarif Attalla K, Hassan DH, Teaima MH, Yousry C, El-Nabarawi MA, Said MA, Elhabal SF. Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management. Pharmaceuticals (Basel) 2025; 18:421. [PMID: 40143197 PMCID: PMC11944838 DOI: 10.3390/ph18030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). Results: The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of -18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. Conclusions: These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Kristina Zarif Attalla
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, km. 22 Cairo-Alex Road, Giza P.O. Box 12577, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt;
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
2
|
Moghimipour E, Khazali M, MakhmalZadeh BS, Abedini Baghbadorani M, Zangeneh A, Sohrabi S, Nejaddehbashi F, Hajipour F, Handali S. Development of propranolol loaded SLN for transdermal delivery: in-vitro characterization and skin deposition studies. Ther Deliv 2025; 16:205-215. [PMID: 39874079 PMCID: PMC11875500 DOI: 10.1080/20415990.2025.2458451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
AIM The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy. MATERIALS AND METHOD The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. In-vitro, ex-vivo and in vivo evaluations were done for PPL loaded SLN. The safety of drug delivery systems was assayed using MTT test. RESULTS The results indicated successful encapsulation of PPL in SLNs (59.38%), which exhibited a spherical shape and smooth surface. Compared to PPL solution, SLNs demonstrated a prolonged drug release profile in vitro. Stability tests over three months showed no significant changes in entrapment efficiency or size distribution. Enhanced permeation through shed snake and rat skin was observed with SLNs compared to the PPL solution. Ex-vivo and in vivo studies confirmed that PPL-loaded SLNs significantly increased drug content in the skin. Importantly, the SLNs displayed biocompatibility, as no significant cytotoxic effects were noted, and they were nonirritating to rat skin. CONCLUSION To the best of our knowledge, this is the first study that indicates SLNs can be considered as a promising nanocarriers for transdermal delivery of PPL.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadamin Khazali
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Ali Zangeneh
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Sohrabi
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Nifli A, Liakopoulou A, Mourelatou E, Avgoustakis K, Hatziantoniou S. Liposomal propranolol for treatment of infantile hemangioma at compounding pharmacies. J Liposome Res 2024; 34:523-534. [PMID: 38335203 DOI: 10.1080/08982104.2024.2313452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Infantile hemangiomas (IH) are common benign soft tissue tumors, frequently affecting infants. While Propranolol Hydrochloride (Pro HCl) has emerged as a promising treatment for IH, its topical application remains challenging due to the need for stable and efficacious carriers. This study investigates the potential of preformulated liposomes as carriers for topical delivery of Pro HCl for the treatment of IH in compounding pharmacies. Liposomes loaded with Pro HCl were prepared using active pharmaceutical ingredient or commercially available propranolol tablets and various dilution media, including Water for Injection (WFI), Dextrose 5%, and NaCl 0.9%. The physicochemical properties of the liposomal formulations (Pro HCl content, encapsulation efficiency, loading capacity, and colloidal stability) were assessed over a 90-day storage at 4 °C. In vitro release kinetics and transdermal permeation of Pro HCl from liposomes were also evaluated. Liposome properties were influenced by the dilution medium. Pro HCl content remained stable in liposomes encapsulating API (Lipo-Pro), regardless of the dilution medium. Lipo-Pro showed sustained drug release over time, suggesting its potential for maintaining therapeutic levels. Pro HCl exhibited enhanced transdermal permeability from Lipo-Pro compared to aqueous solution, indicating its potential for topical IH treatment. Preformulated liposomes offer a stable and effective carrier for Pro HCl, potentially suitable for extemporaneous preparations in compounding pharmacies. Their enhanced transdermal permeability presents a promising alternative for topical IH treatment. This study provides valuable insights into the development of innovative and effective drug delivery strategies for managing IH, with future research focusing on in vivo applications and therapeutic potential.
Collapse
Affiliation(s)
- Antigone Nifli
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Aggeliki Liakopoulou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Elena Mourelatou
- Department of Health Sciences, School of Life and Health Sciences, Pharmacy Program, University of Nicosia, Nicosia, Cyprus
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| |
Collapse
|