1
|
Dallabrida KG, Braz WC, Marchiori C, Alves TM, Cruz LS, Trindade GADM, Machado P, da Rosa LS, Khalil NM, Rego FGDM, Fajardo AR, Ferreira LM, Sari MHM, Reolon JB. Exploring Cationic Guar Gum: Innovative Hydrogels and Films for Enhanced Wound Healing. Pharmaceutics 2024; 16:1233. [PMID: 39339269 PMCID: PMC11435176 DOI: 10.3390/pharmaceutics16091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: This study developed and characterized hydrogels (HG-CGG) and films (F-CGG) based on cationic guar gum (CGG) for application in wound healing. Methods: HG-CGG (2% w/v) was prepared by gum thickening and evaluated for pH, stability, spreadability, and viscosity. F-CGG was obtained using an aqueous dispersion of CGG (6% w/v) and the solvent casting method. F-CGG was characterized for thickness, weight uniformity, morphology, mechanical properties, hydrophilicity, and swelling potential. Both formulations were evaluated for bioadhesive potential on intact and injured porcine skin, as well as antioxidant activity. F-CGG was further studied for biocompatibility using hemolysis and cell viability assays (L929 fibroblasts), and its wound-healing potential by the scratch assay. Results: HG-CGG showed adequate viscosity and spreadability profiles for wound coverage, but its bioadhesive strength was reduced on injured skin. In contrast, F-CGG maintained consistent bioadhesive strength regardless of skin condition (6554.14 ± 540.57 dyne/cm2 on injured skin), presenting appropriate mechanical properties (flexible, transparent, thin, and resistant) and a high swelling capacity (2032 ± 211% after 6 h). F-CGG demonstrated superior antioxidant potential compared to HG-CGG (20.50 mg/mL ABTS+ radical scavenging activity), in addition to exhibiting low hemolytic potential and no cytotoxicity to fibroblasts. F-CGG promoted the proliferation of L929 cells in vitro, supporting wound healing. Conclusions: Therefore, CGG proved to be a promising material for developing formulations with properties suitable for cutaneous use. F-CGG combines bioadhesion, antioxidant activity, biocompatibility, cell proliferation, and potential wound healing, making it promising for advanced wound treatment.
Collapse
Affiliation(s)
- Kamila Gabrieli Dallabrida
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Willer Cezar Braz
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Crisleine Marchiori
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Thainá Mayer Alves
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Luiza Stolz Cruz
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Giovanna Araujo de Morais Trindade
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Patrícia Machado
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil;
| | - Najeh Maissar Khalil
- Applied Nanostructured Systems Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil;
| | - Fabiane Gomes de Moraes Rego
- Grupo de Pesquisa em Doenças Metabólicas (GPDM), Departamento de Análises Clínicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil;
| | - André Ricardo Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil;
| | - Luana Mota Ferreira
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Marcel Henrique Marcondes Sari
- Grupo de Pesquisa em Doenças Metabólicas (GPDM), Departamento de Análises Clínicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil;
| | - Jéssica Brandão Reolon
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| |
Collapse
|
2
|
Jin A, Shao Y, Wang F, Feng J, Lei L, Dai M. Designing polysaccharide materials for tissue repair and regeneration. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0223937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.
Collapse
Affiliation(s)
- Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
3
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Sari MHM, Saccol CP, Custódio VN, da Rosa LS, da Costa JS, Fajardo AR, Ferreira LM, Cruz L. Carrageenan-xanthan nanocomposite film with improved bioadhesion and permeation profile in human skin: A cutaneous-friendly platform for ketoprofen local delivery. Int J Biol Macromol 2024; 265:130864. [PMID: 38493820 DOI: 10.1016/j.ijbiomac.2024.130864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil.
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Vanessa Neuenschwander Custódio
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | | | - Juliê Silveira da Costa
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|