1
|
Zhang C, Fan J, Wu L. Application of nanomaterials in precision treatment of lung cancer. iScience 2025; 28:111704. [PMID: 39886464 PMCID: PMC11780121 DOI: 10.1016/j.isci.2024.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies. This review provides a comprehensive overview of the applications of nanomaterials in lung cancer treatment, focusing on advancements in chemotherapy, phototherapy, and immunotherapy. Key strategies include the development of stimuli-responsive nanoparticles, active targeting mechanisms, and multifunctional platforms for co-delivery of therapeutic agents. Notable successes, such as liposomal formulations and polymeric nanoparticles, highlight the potential to overcome biological barriers and improve therapeutic outcomes. However, significant challenges remain, including limited tumor penetration, immunogenicity, scalability in manufacturing, and regulatory complexities. Addressing these limitations through innovative design, advanced manufacturing technologies, and interdisciplinary collaboration will be critical to translating nanomedicine from bench to bedside. Overall, nanomedicine represents a transformative frontier in lung cancer therapy, offering the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| |
Collapse
|
2
|
Ye M, Yin D, Wu Y, Miao H, Wu Z, Liu P. Infrared radiation for cancer hyperthermia: the light to brighten up oncology. Expert Rev Anticancer Ther 2024; 24:1147-1160. [PMID: 39390965 DOI: 10.1080/14737140.2024.2416063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Cancer constitutes the greatest public health threat to humans, as its incidence and mortality rates continue to increase worldwide. With the development of medical physics, more practitioners focus on the direct and indirect anti-tumor effects of physical factors. Infrared radiation (INR) is currently the most rapidly developing physical therapy method for tumors and has become a favored target for many oncologists and researchers owing to its advantages of high efficiency, low toxicity, and strong feasibility. AREAS COVERED This work provides a comprehensive collection of the latest information on INR anti-tumor research, drawing from public medical databases (PubMed, Web of Science, Embase, and Clinical Trials) from the last 10 years (2014 to 2024), and encompassing both basic and clinical research in oncology and physics. This article reviews the application of INR in tumor hyperthermia, summarizes and analyzes the practical value of INR for tumor treatment, and discusses future development trends to provide valuable assistance for the subsequent development of oncology. EXPERT OPINION Currently, INR has continuously accumulated excellent data in the field of tumor hyperthermia, bringing practical survival benefits to patients with cancer, and playing an important role in basic and clinical cancer research.
Collapse
Affiliation(s)
- Mengna Ye
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Dashan Yin
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Wu
- ACS (International) School of Singapore, Singapore, Singapore
| | - Hua Miao
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
4
|
Du L, Wang P, Huang H, Li M, Roy S, Zhang Y, Guo B. Light-activatable and hyperthermia-sensitive "all-in-one" theranostics: NIR-II fluorescence imaging and chemo-photothermal therapy of subcutaneous glioblastoma by temperature-sensitive liposome-containing AIEgens and paclitaxel. Front Bioeng Biotechnol 2023; 11:1343694. [PMID: 38213575 PMCID: PMC10782224 DOI: 10.3389/fbioe.2023.1343694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nowadays, it is still quite difficult to combat glioblastoma, which is one of the most lethal cancers for human beings. Combinatory therapy, which could not only improve therapeutic efficacy and overcome multiple drug resistance but also decrease the threshold therapeutic drug dosage and minimize side effects, would be an appealing candidate for glioblastoma treatment. Herein, we report fluorescence imaging in the second near-infrared window (NIR-II)-guided combinatory photothermal therapy (PTT) and chemotherapy of glioblastoma with a newly formulated nanomedicine termed PATSL. It is composed of temperature-sensitive liposome (TSL) carriers, NIR-II emissive and photothermal aggregation-induced emission (AIE) dyes, and chemotherapeutic paclitaxel (PTX) as well. PATSL shows spherical morphology with diameters of approximately 55 and 85 nm by transmission electron microscopy and laser light scattering, respectively, a zeta potential of -14.83 mV, good stability in both size and photoactivity, strong light absorption with a peak of approximately 770 nm, and bright emission from 900 nm to 1,200 nm. After excitation with an 808-nm laser with good spatiotemporal controllability, PATSL emits bright NIR-II fluorescence signals for tumor diagnosis in vivo, exhibits high photothermal conversion efficiency (68.8%), and triggers drug release of PTX under hypothermia, which assists in efficient tumor ablation in vitro and in vivo. This research demonstrates that "all-in-one" theranostics with NIR-II fluorescence imaging-guided combinatory PTT and chemotherapy is an efficient treatment paradigm for improving the prognosis of brain cancers.
Collapse
Affiliation(s)
- Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, The Key Laboratory of Neuroimaging, Shenzhen, China
| | - Pan Wang
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, The Key Laboratory of Neuroimaging, Shenzhen, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Menglong Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|