1
|
Garweg JG, Straessle KA. Janus Kinase Inhibitors as a Third-Line Therapy for Refractory Endogenous Noninfectious Uveitis. Ocul Immunol Inflamm 2024:1-8. [PMID: 38709218 DOI: 10.1080/09273948.2024.2348125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Janus kinase (JAK) inhibitors have recently been used to treat patients with biologic refractory noninfectious uveitis (NIU). This narrative review updates the current evidence relevant for their application in patients with refractory NIU. METHODS A literature search was performed for articles published until October 2023 in the PubMed, Scopus, and CENTRAL databases using the key terms "noninfectious uveitis" and "Janus kinase inhibitor" or "JAK inhibitor" without any exclusion criteria. Published articles were selected based on their clinical focus, relevance for ocular disease, time since publication and study design reflecting their scientific soundness with a critical appraisal of drug safety aspects. RESULTS Janus kinases are transmembrane signaling proteins. Their inhibition has shown therapeutic potential experimentally and in patients with multiple immune-mediated diseases, including NIU. JAK inhibitors differ from biological agents in that they inhibit not one specific but multiple cytokines. These agents can be ingested orally and seem superior to adalimumab for most indications. While there is no doubt regarding their efficacy in treating immune-mediated inflammatory diseases, reports regarding their safety are increasing, and the findings are generally confusing and contradictory. Since substantiated information about their specific safety profiles in patients with inflammatory eye disease is lacking, their position in the therapeutic algorithm for uveitis has yet to be determined. CONCLUSIONS In the absence of evidence from controlled clinical trials, JAK inhibitor therapy is still rendered experimental and currently considered only for sight-threatening uveitis. JAK inhibitors may be considered for specific NIU entities for which there is insufficient response or secondary loss of response to conventional or biologic disease-modifying drugs.
Collapse
Affiliation(s)
- Justus G Garweg
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
- Department of Ophthalmology, Inselspital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Kim A Straessle
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
| |
Collapse
|
2
|
Brollo M, Salvator H, Grassin-Delyle S, Glorion M, Descamps D, Buenestado A, Naline E, Tenor H, Tiotiu A, Devillier P. The IL-4/13-induced production of M2 chemokines by human lung macrophages is enhanced by adenosine and PGE 2. Int Immunopharmacol 2024; 128:111557. [PMID: 38266451 DOI: 10.1016/j.intimp.2024.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND PURPOSE Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.
Collapse
Affiliation(s)
- Marion Brollo
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France
| | - Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France
| | - Stanislas Grassin-Delyle
- Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France; Department of Airway Diseases, Thoracic surgery, Foch Hospital, Suresnes, France
| | - Mathieu Glorion
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; INSERM U1173, Infection & Inflammation, Département de Biotechnologie de la Santé, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Delphyne Descamps
- VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, Jouy-en-Josas, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France
| | | | - Angelica Tiotiu
- Department of Pulmonary Medicine, University Hospital Saint-Luc, Institut of Experimental and Clinical Research (IREC), University of Louvain, Brussels, Belgium
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France.
| |
Collapse
|