1
|
Aligolighasemabadi F, Bakinowska E, Kiełbowski K, Sadeghdoust M, Coombs KM, Mehrbod P, Ghavami S. Autophagy and Respiratory Viruses: Mechanisms, Viral Exploitation, and Therapeutic Insights. Cells 2025; 14:418. [PMID: 40136667 PMCID: PMC11941543 DOI: 10.3390/cells14060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Respiratory viruses, such as influenza virus, rhinovirus, coronavirus, and respiratory syncytial virus (RSV), continue to impose a heavy global health burden. Despite existing vaccination programs, these infections remain leading causes of morbidity and mortality, especially among vulnerable populations like children, older adults, and immunocompromised individuals. However, the current therapeutic options for respiratory viral infections are often limited to supportive care, underscoring the need for novel treatment strategies. Autophagy, particularly macroautophagy, has emerged as a fundamental cellular process in the host response to respiratory viral infections. This process not only supports cellular homeostasis by degrading damaged organelles and pathogens but also enables xenophagy, which selectively targets viral particles for degradation and enhances cellular defense. However, viruses have evolved mechanisms to manipulate the autophagy pathways, using them to evade immune detection and promote viral replication. This review examines the dual role of autophagy in viral manipulation and host defense, focusing on the complex interplay between respiratory viruses and autophagy-related pathways. By elucidating these mechanisms, we aim to highlight the therapeutic potential of targeting autophagy to enhance antiviral responses, offering promising directions for the development of effective treatments against respiratory viral infections.
Collapse
Affiliation(s)
- Farnaz Aligolighasemabadi
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Estera Bakinowska
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Saeid Ghavami
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Akademia Śląska, Ul Rolna 43, 40-555 Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Yao C, Zhang R, Xie Z, Wu Y, Wu X. A Magnetically Actuated MOF-Based Nanozyme for Intensified Induction of Ferroptosis and Immunogenic Cell Death Via Autophagy Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409026. [PMID: 39659092 DOI: 10.1002/smll.202409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Nanozymes mimicking enzymes show great promise in anti-tumor therapy but are often limited by their low catalytic activity and lack of tumor specificity in hostile tumor microenvironments. This study develops a novel nanozyme, D/P@ZUCO, utilizing metal-organic frameworks (MOFs) with glutathione oxidase, peroxidase, and catalase-like activities. D/P@ZUCO is synthesized using ZnFe2O4 and NH2-UiO66 (Cu/Zr) through an in situ growth method, followed by loading with doxorubicin (DOX) and primaquine (PQ), and functionalization with oxidized hyaluronic acid (OHA). It efficiently catalyzes the conversion of hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and glutathione (GSH) into glutathione disulfide (GSSH), initiating ferroptosis in cancer cells. Additionally, the conversion of excess H2O2 into oxygen (O2) enhances the apoptosis effects of DOX. Importantly, the inhibition of autophagy by D/P@ZUCO exacerbates ferroptosis and immunogenic cell death (ICD), triggering a potent anti-tumor immune response. The targeted drug delivery of D/P@ZUCO is facilitated by magnetic guidance and interactions between OHA and CD44 receptors. D/P@ZUCO demonstrates effective cancer treatment by triggering multiple cell death pathways through a synergistic combination of enzymatic actions, serving as a paradigm for systemic activation of multiple enzymes in triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Can Yao
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Rui Zhang
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Zongliang Xie
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| |
Collapse
|
3
|
Tian RZ, Zhuang DL, Vong CT, He X, Ouyang Q, Liang JH, Guo YP, Wang YH, Zhao S, Yuan H, Ide Nasser M, Li G, Zhu P. Role of Autophagy in Myocardial Remodeling After Myocardial Infarction. J Cardiovasc Pharmacol 2025; 85:1-11. [PMID: 39454200 DOI: 10.1097/fjc.0000000000001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024]
Abstract
ABSTRACT Autophagy is the process of reusing the body's senescent and damaged cell components, which can be regarded as the cellular circulatory system. There are 3 distinct forms of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. In the heart, autophagy is regulated mainly through mitophagy because of the metabolic changes of cardiomyocytes caused by ischemia and hypoxia. Myocardial remodeling is characterized by gradual heart enlargement, cardiac dysfunction, and extraordinary molecular changes. Cardiac remodeling after myocardial infarction is almost inevitable, which is the leading cause of heart failure. Autophagy has a protective effect on myocardial remodeling improvement. Autophagy can minimize cardiac remodeling by preventing misfolded protein accumulation and oxidative stress. This review summarizes the nestest molecular mechanisms of autophagy and myocardial remodeling, the protective effects, and the new target of autophagy medicine in cardiac remodeling. The future development and challenges of autophagy in heart disease are also summarized.
Collapse
Affiliation(s)
- Run-Ze Tian
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong-Lin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Xuyu He
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing-Hua Liang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ping Guo
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu-Hong Wang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China; and
| | - Haiyun Yuan
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Moussa Ide Nasser
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
5
|
Rahman MA, Apu EH, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Taleb SA, Shaikh MH, Jalouli M, Harrath AH, Kim B. Exploring Importance and Regulation of Autophagy in Cancer Stem Cells and Stem Cell-Based Therapies. Cells 2024; 13:958. [PMID: 38891090 PMCID: PMC11171866 DOI: 10.3390/cells13110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is a globally conserved cellular activity that plays a critical role in maintaining cellular homeostasis through the breakdown and recycling of cellular constituents. In recent years, there has been much emphasis given to its complex role in cancer stem cells (CSCs) and stem cell treatment. This study examines the molecular processes that support autophagy and how it is regulated in the context of CSCs and stem cell treatment. Although autophagy plays a dual role in the management of CSCs, affecting their removal as well as their maintenance, the intricate interaction between the several signaling channels that control cellular survival and death as part of the molecular mechanism of autophagy has not been well elucidated. Given that CSCs have a role in the development, progression, and resistance to treatment of tumors, it is imperative to comprehend their biological activities. CSCs are important for cancer biology because they also show a tissue regeneration model that helps with organoid regeneration. In other words, the manipulation of autophagy is a viable therapeutic approach in the treatment of cancer and stem cell therapy. Both synthetic and natural substances that target autophagy pathways have demonstrated promise in improving stem cell-based therapies and eliminating CSCs. Nevertheless, there are difficulties associated with the limitations of autophagy in CSC regulation, including resistance mechanisms and off-target effects. Thus, the regulation of autophagy offers a versatile strategy for focusing on CSCs and enhancing the results of stem cell therapy. Therefore, understanding the complex interactions between autophagy and CSC biology would be essential for creating therapeutic treatments that work in both regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology and Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - S. M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Mushfiq H. Shaikh
- Department of Otolaryngology—Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|