1
|
Patitucci F, Motta MF, Mileti O, Dattilo M, Malivindi R, Pezzi G, Gabriele D, Parisi OI, Puoci F. Enhancing burn wound care with pre-crosslinked 3D-printed patches: Bromelain delivery and aloe vera bioactives integration for improved healing outcomes. Int J Pharm 2025; 672:125304. [PMID: 39914510 DOI: 10.1016/j.ijpharm.2025.125304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Burn wounds remain a major clinical challenge due to the limitations of traditional dressings, which often fail to address the diverse needs of patients and varying wound types. This study aimed to advance burn care by developing a 3D-printed patch incorporating natural bioactive compounds from bromelain and aloe vera. The patch was formulated using pre-crosslinked chitosan and alginate hydrogels to ensure suitability for 3D printing and subsequent use. Rheological analysis revealed weak gel behaviour and shear-thinning properties, ensuring excellent printability. The patches exhibited outstanding swelling behaviour and controlled degradation (30 %), alongside notable antioxidant and anti-inflammatory potential, with a polyphenolic content of 1.43 ± 0.07 mg CAE/g and effective scavenging of DPPH, ABTS, and NO radicals, with IC50 values of 29.51 ± 0.30, 10.31 ± 0.28, and 5.94 ± 0.42 mg/mL, respectively. Bioactive compounds from bromelain were consistently released across various pH levels, supporting their therapeutic efficacy. Cell viability studies confirmed strong support for cell growth, while in vitro scratch tests demonstrated biocompatibility and promotion of wound closure. Histological analysis of ex vivo burn models revealed cellular necrosis and protein denaturation characteristic of burn wounds. Application of the patches significantly improved epidermal morphology and enhanced proliferation markers such as Ki67 and α-SMA, indicative of accelerated wound healing. While further clinical validation is needed, these findings underscore the potential of the 3D-printed patches as an innovative solution for burn wound care, offering improved bioactive delivery and enhanced healing outcomes compared to conventional dressings.
Collapse
Affiliation(s)
- Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Marisa Francesca Motta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Pezzi
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
2
|
Pan P, Hu C, Liang A, Liu X, Fang M, Yang S, Zhang Y, Li M. Preparation and Properties of Antibacterial Silk Fibroin Scaffolds. Polymers (Basel) 2023; 15:4581. [PMID: 38231982 PMCID: PMC10708750 DOI: 10.3390/polym15234581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The development of a wound dressing with both antibacterial and healing-guiding functions is a major concern in the treatment of open and infected wounds. In this study, poly(hexamethylene biguanide) hydrochloride (PHMB) was loaded into a 3D silk fibroin (SF) scaffold based on electrostatic interactions between PHMB and SF, and PHMB/SF hybrid scaffolds were prepared via freeze-drying. The effects of the PHMB/SF ratio on the antibacterial activity and cytocompatibility of the hybrid scaffold were investigated. The results of an agar disc diffusion test and a bacteriostasis rate examination showed that when the mass ratio of PHMB/SF was greater than 1/100, the scaffold exhibited obvious antibacterial activity against E. coli and S. aureus. L-929 cells were encapsulated in the PHMB/SF scaffolds and cultured in vitro. SEM, laser scanning confocal microscopy, and CCK-8 assay results demonstrated that hybrid scaffolds with a PHMB/SF ratio of less than 2/100 significantly promoted cell adhesion, spreading, and proliferation. In conclusion, a hybrid scaffold with a PHMB/SF ratio of approximately 2/100 not only effectively inhibited bacterial reproduction but also showed good cytocompatibility and is expected to be usable as a functional antibacterial dressing for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (P.P.); (C.H.); (A.L.); (X.L.); (M.F.); (S.Y.); (Y.Z.)
| |
Collapse
|