1
|
BERNAL GIULIANO, AQUEA GISELA, RAMÍREZ-RIVERA SEBASTIÁN. Metal-based molecules in the treatment of cancer: From bench to bedside. Oncol Res 2025; 33:759-779. [PMID: 40191719 PMCID: PMC11964877 DOI: 10.32604/or.2024.057019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/15/2024] [Indexed: 04/09/2025] Open
Abstract
Cancer remains one of the leading causes of death in the world, with more than 9 million deaths in 2022, a number that continues to rise. This highlights the urgent need for the development of new drugs, with enhanced antitumor capabilities and fewer side effects. Metal-based drugs have been used in clinical practice since the late 1970s, beginning with the introduction of cisplatin. Later, two additional platinum-based molecules, carboplatin, and oxaliplatin, were introduced, and all three continue to be widely used in the treatment of various cancers. However, despite their significant anticancer activity, the undesirable side effects of these drugs have motivated the scientific community to explore other metal-based complexes with greater anticancer potential and fewer adverse effects. In this context, metals such as ruthenium, copper, gold, zinc, palladium, or iridium, present promising alternatives for the development of new anticancer agents. Unfortunately, although thousands of metal-based drugs have been synthesized and tested both in vitro and in animal models, only a few ruthenium-based drugs have entered clinical trials in recent years. Meanwhile, many other molecules with comparable or even greater anticancer potential have not advanced beyond the laboratory stage. In this review, we will revisit the mechanisms of action and anticancer activities of established platinum-based drugs and explore their use in recent clinical trials. Additionally, we will examine the development of potential new metal-based drugs that could one day contribute to cancer treatment worldwide.
Collapse
Affiliation(s)
- GIULIANO BERNAL
- />Laboratory of Molecular and Cellular Biology of Cancer, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, 1781421, Chile
| | - GISELA AQUEA
- />Laboratory of Molecular and Cellular Biology of Cancer, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, 1781421, Chile
| | - SEBASTIÁN RAMÍREZ-RIVERA
- />Laboratory of Molecular and Cellular Biology of Cancer, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, 1781421, Chile
| |
Collapse
|
2
|
Swaminathan S, Haribabu J, Karvembu R. From Concept to Cure: The Road Ahead for Ruthenium-Based Anticancer Drugs. ChemMedChem 2024; 19:e202400435. [PMID: 39374112 DOI: 10.1002/cmdc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Indexed: 10/09/2024]
Abstract
The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Center for Computational Modelling, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
- Inorganic and Physical Chemistry Laboratory, CSIR-CLRI, Chennai, Tamil Nadu, 600020, India
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, Copiapo, 1532502, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
3
|
Happl B, Balber T, Heffeter P, Denk C, Welch JM, Köster U, Alliot C, Bonraisin AC, Brandt M, Haddad F, Sterba JH, Kandioller W, Mitterhauser M, Hacker M, Keppler BK, Mindt TL. Synthesis and preclinical evaluation of BOLD-100 radiolabeled with ruthenium-97 and ruthenium-103. Dalton Trans 2024; 53:6031-6040. [PMID: 38470348 DOI: 10.1039/d4dt00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BOLD-100 (formerly IT-139, KP1339), a well-established chemotherapeutic agent, is currently being investigated in clinical trials for the treatment of gastric, pancreatic, colorectal, and bile duct cancer. Despite numerous studies, the exact mode of action is still the subject of discussions. Radiolabeled BOLD-100 could be a powerful tool to clarify pharmacokinetic pathways of the compound and to predict therapy responses in patients using nuclear molecular imaging prior to the therapy. In this study, the radiosyntheses of carrier-added (c.a.) [97/103Ru]BOLD-100 were performed with the two ruthenium isotopes ruthenium-103 (103Ru; β-, γ) and ruthenium-97 (97Ru; EC, γ), of which in particular the latter isotope is suitable for imaging by single-photon emission computed tomography (SPECT). To identify the best tumor-to-background ratio for diagnostic imaging, biodistribution studies were performed with two different injected doses of c.a. [103Ru]BOLD-100 (3 and 30 mg kg-1) in Balb/c mice bearing CT26 allografts over a time period of 72 h. Additionally, ex vivo autoradiography of the tumors (24 h p.i.) was conducted. Our results indicate that the higher injected dose (30 mg kg-1) leads to more unspecific accumulation of the compound in non-targeted tissue, which is likely due to an overload of the albumin transport system. It was also shown that lower amounts of injected c.a. [103Ru]BOLD-100 resulted in a relatively higher tumor uptake and, therefore, a better tumor-to-background ratio, which are encouraging results for future imaging studies using c.a. [97Ru]BOLD-100.
Collapse
Affiliation(s)
- B Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
| | - T Balber
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - P Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - C Denk
- Institute of Applied Synthetic Chemistry, Technische Universität (TU) Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - J M Welch
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - U Köster
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - C Alliot
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- CRCI2NA, Inserm/CNRS/Nantes Université, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - A-C Bonraisin
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
| | - M Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - F Haddad
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Nantes Université, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - J H Sterba
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - W Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - M Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - T L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|