1
|
Karmous I, Elmer WH, Zuverza-Mena N, Vaidya S, Tlahig S, Scanley J, Bharadwaj A, White JC, Dimkpa CO. Plant-engineered ZnO and CuO nanoparticles exhibit pesticidal activity and mitigate Fusarium infestation in soybean: A mechanistic understanding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109672. [PMID: 39986238 DOI: 10.1016/j.plaphy.2025.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Herein, CuO and ZnO nanoparticles (NPs) were biogenically synthesized using plant (Artemisia vulgaris) extracts. The biogenic NPs were subsequently evaluated in vitro for antifungal activity (200 mg/L) against Fusarium virguliforme (FV; the cause of soybean sudden death), and for crop protection (200-500 mg/L) in FV-infested soybean. ZnONPs exhibited 3.8-, 2.5-, and 4.9 -fold greater in vitro antifungal activity, compared to Zn or Cu acetate salt, the Artemisia extract, and a commercial fungicide (Medalion Fludioxon), respectively. The corresponding CuONP values were 1.2-, 1.0-, and 2.2 -fold, respectively. Scanning electron microscopy (SEM) revealed significant morpho-anatomical damage to fungal mycelia and conidia. NP-treated FV lost their hyphal turgidity and uniformity and appeared structurally compromised. ZnONP caused shriveled and broken mycelia lacking conidia, while CuONP caused collapsed mycelia with shriveled and disfigured conidia. In soybean, 200 mg/L of both NPs enhanced growth by 13%, compared to diseased controls, in both soil and foliar exposures. Leaf SEM showed fungal colonization of different infection sites, including the glandular trichome, palisade parenchyma, and vasculature. Foliar application of ZnONP resulted in the deposition of particulate ZnO on the leaf surface and stomatal interiors, likely leading to particle and ion entry via several pathways, including ion diffusion across the cuticle/stomata. SEM also suggested that ZnO/CuO NPs trigger structural reinforcement and anatomical defense responses in both leaves and roots against fungal infection. Collectively, these findings provide important insights into novel and effective mechanisms of crop protection against fungal pathogens by plant-engineered metal oxide nanoparticles, thereby contributing to the sustainability of nano-enabled agriculture.
Collapse
Affiliation(s)
- Ines Karmous
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA; The Higher Institute of Applied Biology of Medenine (ISBAM), Road Djorf Km 22, 4119, University of Gabes, Tunisia; Faculty of Sciences of Bizerte (FSB), University of Carthage, 7021, Bizerte, Tunisia
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Shital Vaidya
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Samir Tlahig
- Dryland Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions of Medenine, Road Djorf Km 22, 4119, Medenine, Tunisia; Project Management Office PMO-UCAR, University of Carthage, Avenue of the Republic BP 77-1054 Amilcar, Tunisia
| | | | - Anuja Bharadwaj
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Christian O Dimkpa
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA.
| |
Collapse
|
2
|
Fayed B, El-Sayed HS, Luo S, Reda AE. Comparative evaluation of biologically and chemically synthesized zinc oxide nanoparticles for preventing Candida auris biofilm. Biometals 2025:10.1007/s10534-025-00678-6. [PMID: 40163280 DOI: 10.1007/s10534-025-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Candidozyma auris (formerly Candida auris) is a multidrug-resistant yeast that poses a significant global health threat due to its ability to form biofilms and resist various antifungal treatments. This study evaluates and compares the antifungal efficacy of biologically synthesized zinc oxide nanoparticles (ZnO-NP-B) and chemically synthesized ZnO nanoparticles (ZnO-NP-C1 and ZnO-NP-C2), developed using the dry-wet chemical method and sol-gel method, respectively. ZnO-NP-B was synthesized using Lactobacillus gasseri. The nanoparticles were characterized for size, charge, and morphology using Particle Size Analyzer, photon correlation spectroscopy with a 90 Plus Zetasizer, and scanning electron microscopy (SEM), respectively. The antifungal activity was assessed through minimum inhibitory concentration (MIC50) determination, biofilm inhibition assays by XTT assay, and gene expression analysis. ZnO-NP-C1 exhibited the highest antifungal activity against C. auris planktonic cells, with a MIC50 value of 61.9 ± 3.3 µg/ml, followed by ZnO-NP-C2 (151 ± 7.83 µg/ml), whereas ZnO-NP-B showed limited efficacy (MIC50 = 1 mg/ml). Chemically synthesized ZnO-NPs, particularly ZnO-NP-C2, did not induce overexpression of resistance genes (CDR1, MDR1, ERG2, ERG11, FKS1, CHS1), whereas ZnO-NP-B triggered their upregulation, potentially promoting resistance. ZnO-NP-C1 was the most effective in preventing biofilm formation, reducing C. auris adhesion by 67.9 ± 2.35% at 150 µg/ml, while ZnO-NP-B exhibited negligible inhibition. Gene expression analysis further confirmed that ZnO-NP-C1 significantly downregulated adhesive genes (ALS5, IFF4, CSA1) by up to 0.37 ± 0.006, 0.043 ± 0.002, and 0.06 ± 0.0004, respectively. These findings highlight the potential of ZnO-NP-C1 as a promising antifungal agent for preventing C. auris biofilms, emphasizing the critical role of synthesis methods in optimizing nanoparticle properties for antifungal applications.
Collapse
Affiliation(s)
- Bahgat Fayed
- Chemistry of Natural and Microbial Product, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Hoda S El-Sayed
- Dairy Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Aisha E Reda
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Segueni K, Chouikh A, Eddine Laouini S, Bouafia A, Laid Tlili M, Laib I, Boudebia O, Khelef Y, Abdullah MMS, Abdullah JAA, Bin Emran T. Evaluation of Dermal Wound Healing Potential: Phytochemical Characterization, Anti-Inflammatory, Antioxidant, and Antimicrobial Activities of Euphorbia guyoniana Boiss. & Reut. Latex. Chem Biodivers 2025; 22:e202402284. [PMID: 39495036 DOI: 10.1002/cbdv.202402284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the wound-healing potential of Euphorbia guyoniana latex (EGL) in male Wistar rats, along with its biochemical composition and biological activities. Phytochemical analysis identified moderate levels of phenolics, flavonoids, and tannins, with HPLC revealing five phenolic compounds. EGL demonstrated strong antioxidant activity in DPPH assays, surpassing ascorbic acid in protecting red blood cells. Its performance in the ß-carotene-linoleic acid assay was robust, though its FRAP assay results were weaker. EGL also exhibited significant anti-inflammatory activity, comparable to Acetylsalicylic acid, and showed antibacterial effects against Listeria innocua. In Vivo, EGL-infused ointments accelerated wound healing, reducing epithelialization periods to 12-16 days, with a higher wound contraction rate compared to controls. The study concludes that EGL, rich in bioactive compounds, holds potential as a promising natural agent for wound healing, owing to its potent antioxidant, anti-inflammatory, and antibacterial properties.
Collapse
Affiliation(s)
- Khaoula Segueni
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Atef Chouikh
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
| | - Mohammed Laid Tlili
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Ouafa Boudebia
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Yahia Khelef
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Mahmood M S Abdullah
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Johar Amin Ahmed Abdullah
- Department of Chemical Engineering, Higher Technical School, University of Seville, 41011, Seville, Spain
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
4
|
Tang K, See W, Naidu R. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease. Biosci Rep 2024; 44:BSR20241102. [PMID: 39501749 PMCID: PMC11554912 DOI: 10.1042/bsr20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
Parkinson's disease (PD) significantly affects millions of people worldwide due to the progressive degeneration of dopamine-producing neurons in the substantia nigra pars compacta. Despite extensive research efforts, effective treatments that can halt or reverse the progression of PD remain elusive. In recent years, nanotechnology has emerged as a promising new avenue for addressing this challenge, with zinc oxide nanoparticles (ZnO-NPs) standing out for their extensive therapeutic potential. ZnO-NPs have shown remarkable promise in neuroprotection through several key mechanisms. The multifaceted properties of ZnO-NPs suggest that they could play a crucial role in intervening across various fundamental mechanisms implicated in PD. By targeting these mechanisms, ZnO-NPs offer new insights and potential strategies for managing and treating PD. This review aims to provide a thorough examination of the molecular mechanisms through which ZnO-NPs exert their neuroprotective effects. It highlights their potential as innovative therapeutic agents for PD and outlines directions for future research to explore and harness their full capabilities.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Dasauni K, Nailwal TK, Nenavathu BPN. Plant extract-mediated biosynthesis of sulphur nanoparticles and their antibacterial and plant growth-promoting activity. Heliyon 2024; 10:e37797. [PMID: 39315212 PMCID: PMC11417562 DOI: 10.1016/j.heliyon.2024.e37797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This study reports green synthesis of sulphur nanoparticles using sodium thiosulfate pentahydrate (Na2S2O35H2O) and Cannabis sativa leaf extracts. X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) was employed to examine the crystallinity of the particles and morphological characteristics, proved both spherical and rod-shaped morphology of the S NPs having porous nature. The FTIR spectra revealed the interaction of the synthesized SNPs with the biomolecules present in the leaf extract. UV-VIS spectral investigations confirmed the production of SNPs from C. sativa leaf extract and that these SNPs can be used for visible region photocatalysis for the removal of pollutants from wastewater. Energy dispersive X-ray (EDX) spectrum of the SNP shows a single peak around 2.4 keV, confirmed S NPs purity. TEM image revealed the formation of mainly nanorods having a width of ∼20-25 nm and a length of 50-100 nm. Furthermore, some spherical particles (∼20-30 nm) were also formed. HRTEM image of the rod-shaped particles clearly shows the crystal fringe spacing of 0.38 nm. Further, disc diffusion method (DDM) was used to check the antibacterial activity of S NPs against gram-positive S. aureus (MTCC737) 18 ± 0.12 mm and gram-negative bacteria against E. coli (MTCC443) 21.5 ± 0.12 mm, A. salmonicida (MTCC1522) 19.1 ± 0.12 mm, K. pneumoniae (MTCC3384) 17.8 ± 0.10 mm. Among all the strains of bacteria, E. coli (MTCC443) showed a maximum zone of inhibition of 21.5 ± 0.12 mm and its antibacterial activity is somewhat like streptomycin sulfate. These SNPs also promote growth of C. sativa in pot experiment, resulting in a 30 % increase in biomass, 90 cm in shoot length and 28 cm in root length and higher fresh and dry weight (50g and 20g, respectively) with 1.0 mg mL-1 NPs treatment. In addition, SEM-EDX confirmed the accumulation of nanomaterial in plant leaves. This environmentally friendly approach to SNP synthesis using C. sativa extracts demonstrates both potent antibacterial properties and plant growth-promoting effects, making it a promising solution for agriculture and biomedicine.
Collapse
Affiliation(s)
- Khushboo Dasauni
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Tapan K. Nailwal
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Bhavani Prasad Naik Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi-110006-India
| |
Collapse
|
6
|
Ferdous J, Al Manun A, Rahman MM, Rana R, Huda N, Huq A, Rashid A, Kabir MH, Bari A. Green synthesis and characterization of silver nanoparticles from Nigella sativa L seeds and It’s against human pathogenic bacteria and fungi. THE MICROBE 2024; 4:100111. [DOI: 10.1016/j.microb.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Niebles Navas AF, Araujo-Rodríguez DG, Valencia-Llano CH, Insuasty D, Delgado-Ospina J, Navia-Porras DP, Zapata PA, Albis A, Grande-Tovar CD. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024; 29:3850. [PMID: 39202929 PMCID: PMC11356782 DOI: 10.3390/molecules29163850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Andrés Felipe Niebles Navas
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniela G Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
8
|
Arif M, Rauf A, Akhter T. A comprehensive review on crosslinked network systems of zinc oxide-organic polymer composites. Int J Biol Macromol 2024; 274:133250. [PMID: 38908628 DOI: 10.1016/j.ijbiomac.2024.133250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In recent years, the synergistic crosslinked networks formed by zinc oxide (ZnO) particles and organic polymers have gained significant attention. This importance is ascribed due to the valuable combination of low band gap containing ZnO particles with responsive behavior containing organic polymers. These properties of both ZnO and organic polymers make a suitable system of crosslinked ZnO-organic polymer composite (CZOPC) for various applications in the fields of biomedicine, catalysis, and environmental perspectives. The literature extensively provided the diverse morphologies and structures of CZOPC, and these architectural structures play a crucial role in determining their efficiency across various applications. Consequently, the careful design of CZOPC shapes tailored to specific purposes has become a focal point. This comprehensive review provides insights into the classifications, synthetic approaches, characterizations, and applications of ZnO particles decorated in organic polymers with crosslinked network. The exploration extends to the adsorption, environmental, catalytic, and biomedical applications of ZnO-organic polymer composites. Adopting a tutorial approach, the review systematically investigates and elucidates the applications of CZOPC with a comprehensive understanding of their diverse capabilities and uses.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
9
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|