1
|
Wang F, Yin L, Hu Y. Progress of extracellular vesicles-based system for tumor therapy. J Control Release 2025; 381:113570. [PMID: 39993635 DOI: 10.1016/j.jconrel.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The increasing number of new cancer cases and cancer-related deaths worldwide highlights the urgent need to develop novel anti-tumor treatment methods to alleviate the current challenging situation. Nearly all organisms are capable of secreting extracellular vesicles (EVs), and these nano-scale EVs carrying biological molecules play an important role in intercellular communication, further affecting various physiological and pathological processes. Notably, EVs from different sources have differences in their characteristics and functions. Consequently, diverse EVs have been utilized as drug or vaccine delivery carriers for improving anti-tumor treatment due to their good safety, ease of modification and unique properties, and achieved satisfactory results. Meanwhile, the clinical trials of EV-based platform for tumor therapy are also continuously being conducted. Therefore, in this review, we summarize the recent research progress of EV-based tumor treatment methods, including the introduction of main sources and unique functions of EVs, the application of EVs in tumor treatment as well as their prospects and challenges. Additionally, considering the unique advantages of artificial EVs over natural EVs, we also highlighted their characteristics and applications in tumor treatments. We believe that this review will help researchers develop novel EV-based anti-tumor platforms through a bottom-up design and accelerate the development in this field.
Collapse
Affiliation(s)
- Fei Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Le Yin
- Affiliated Tongzhou Hospital of Xinglin College, Nantong University, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong, Jiangsu 226300, China.
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
2
|
Yi X, Chen Y, Gao X, Gao S, Xia G, Shen X. Enhancement of digestive stability in curcumin-loaded liposomes via glycolipids: An analysis in vitro and in vivo. Food Res Int 2025; 208:116255. [PMID: 40263809 DOI: 10.1016/j.foodres.2025.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The active ingredient embedded in liposomes is usually released prematurely due to its poor digestive stability. The purpose of this study was to explore the digestion process of glycolipids-altered curcumin-loaded liposomes in the gastrointestinal tract. In vitro modeling revealed that glycolipids improved the digestive stability of liposomes, as evidenced by less curcumin release and particle size changes, accompanied by a decrease in curcumin oxidation products. Dynamic digestion process simulations demonstrated that the decrease in digestibility was due to glycolipids decreasing the binding of liposomes to digestive enzymes. The Sprague Dawley rat model found that glycolipids increased serum levels of curcumin and metabolites, with an elevation of maximum curcumin concentration from 0.58 to 3.61 μg/mL. Analysis of residual curcumin levels in digestive fluids also demonstrated that glycolipids promoted curcumin absorption in rats. In addition, serum lipidomic analysis demonstrated that glycolipids and curcumin co-regulated lipid metabolism in rats, and that curcumin was a major factor influencing lipid composition. This study can provide guidance for solving the stability challenges of liposomes during oral administration.
Collapse
Affiliation(s)
- Xiangzhou Yi
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China; Hainan Provincial Marine Food Engineering Technology Research Center, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuxin Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China; Hainan Provincial Marine Food Engineering Technology Research Center, Hainan Tropical Ocean University, Sanya 572022, China; School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Llamedo A, Rodríguez P, de Passos C, Freitas-Rodriguez S, Coto AM, Soengas RG, Alonso-Bartolomé R. Liposomal formulation of a vitamin C derivative: a promising strategy to increase skin permeability. J Liposome Res 2025:1-9. [PMID: 39985147 DOI: 10.1080/08982104.2025.2466449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
This study describes the development of a novel liposomal formulation incorporating 3-O-ethyl-L-ascorbic acid (EAA), a derivative of vitamin C. The EAA-loaded liposomes were fully characterized, particle size and zeta potential values suitable for drug delivery. The skin penetration studies revealed that liposomal formulation enhanced EAA retention in the skin compared to free EAA. Additionally, the impact of topical treatments with liposomal EAA on photo-aging markers in skin explants was investigated. EAA charged liposomes display a protective or stimulatory effect on cellular metabolism. Finally, liposomal EAA have a significant effect on the inflamatory markers, reducing the extracellular matrix degradation associated with UV-induced damage of skin. These findings provide valuable insights into the potential of liposomal formulations for the development of advanced cosmetic products.
Collapse
Affiliation(s)
- Alejandro Llamedo
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Oviedo, Spain
- Nalón Innova, Oviedo, Spain
| | - Pablo Rodríguez
- Nanovex Biotechnologies S.L, Parque Tecnológico de Asturias Edificio CEEI, Llanera, Spain
| | - Carolina de Passos
- Nanovex Biotechnologies S.L, Parque Tecnológico de Asturias Edificio CEEI, Llanera, Spain
| | | | | | - Raquel G Soengas
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Oviedo, Spain
| | | |
Collapse
|
5
|
Wu S, Lu J. Liposome-Enabled Nanomaterials for Muscle Regeneration. SMALL METHODS 2025:e2402154. [PMID: 39967365 DOI: 10.1002/smtd.202402154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Muscle regeneration is a vital biological process that is crucial for maintaining muscle function and integrity, particularly for the treatment of muscle diseases such as sarcopenia and muscular dystrophy. Generally, muscular tissues can self-repair and regenerate under various conditions, including acute or chronic injuries, aging, and genetic mutation. However, regeneration becomes challenging beyond a certain threshold, particularly in severe muscle injuries or progressive diseases. In recent years, liposome-based nanotechnologies have shown potential as promising therapeutic strategies for muscle regeneration. Liposomes offer an adaptable platform for targeted drug delivery due to their cell membrane-like structure and excellent biocompatibility. They can enhance drug solubility, stability, and targeted delivery while minimizing systemic side effects by different mechanisms. This review summarizes recent advancements, discusses current applications and mechanisms, and highlights challenges and future directions for possible clinical translation of liposome-based nanomaterials in the treatment of muscle diseases. It is hoped this review offers new insights into the development of liposome-enabled nanomedicine to address current limitations.
Collapse
Affiliation(s)
- Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Nistor M, Nicolescu A, Amarandi RM, Pui A, Stiufiuc RI, Dragoi B. Multi spectroscopic investigation of maisine-based microemulsions as convenient carriers for co-delivery of anticancer and anti-inflammatory drugs. Sci Rep 2025; 15:5175. [PMID: 39939665 PMCID: PMC11822113 DOI: 10.1038/s41598-025-89540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
Lipid-based drug delivery systems are very promising in addressing critical medical needs associated with cancer because they are able to enhance the efficacy of the therapeutic agents loaded in. Yet, their transferability from bench to bedside is still a challenge as it hits many barriers. Among them, the absence of a clear design made on the deeper understanding of the intermolecular forces underlying the formation of the drug-carrier system and the controlled release of the drug is relevant. In this contribution, we rationally designed and prepared lipid-based formulations of an anticancer drug, fluorouracil (FU - hydrophilic) and an anti-inflammatory drug, ibuprofen (IBU - hydrophobic) to thoroughly characterize the specific intermolecular interactions between drugs and components of the carrier matrix. Microemulsions (ME) were selected as the main carriers for this study, but a comparison with liposomes was performed to observe if different organization of the lipophilic and hydrophilic compartments influences the loading capacity and controlled release of these two drugs. Using Maisine CC, a biocompatible oil, and Tween 20 as the surfactant, normal oil-in-water ME loaded with FU and IBU (1:1, 1:3, 1:6, wt:wt) were prepared by the water titration method. MEs were characterized by DLS, Zeta potential, and DOSY spectroscopies to assess their droplet size, surface charge, structure and type of emulsion. Intermolecular interactions between drugs and components of the ME's matrix were investigated by FT-IR, RAMAN and 1H-NMR spectroscopies. The experimental results of DOSY revealed that all components of MEs are gathered in normal oil-in-water ME. Due to their different affinities for the main components of the ME, FU, and IBU were mainly distributed in the aqueous and oily phases, respectively, as supported by the droplet size measured by DLS. It was observed that co-loading the two drugs impacted the release behavior, assessed by the dialysis bag method, as compared with the mono-drug formulations. Based on the findings of this work, a release mechanism for FU and IBU was proposed, as well. Overall, the ME proved to be more suitable nanocarriers since the drugs, which were loaded in higher amounts as compared to liposomes, followed a controlled and sustained release of at least 96 h.
Collapse
Grants
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Mirela Nistor
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Roxana-Maria Amarandi
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
| | - Aurel Pui
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania
| | - Rares-Ionut Stiufiuc
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, Cluj-Napoca, 400349, Romania
| | - Brindusa Dragoi
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania.
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania.
| |
Collapse
|
7
|
Okafor NI, Omoteso OA, Choonara YE. The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases. DISCOVER NANO 2025; 20:19. [PMID: 39883380 PMCID: PMC11782757 DOI: 10.1186/s11671-024-04170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary. However, as the pathological understanding of infectious diseases become more known, the need for more advanced liposomal technologies was born to continue having a profound effect on targeted chemotherapy for infectious diseases. This review therefore provides a concise incursion into the most recent and vogue liposomal formulations used to treat infectious diseases. An appraisal of immunological, stimuli-responsive, biomimetic and functionalized liposomes and other novel modifications to conventional liposomes is assimilated in sync with mutations of resistant pathogens.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
8
|
Młynarska E, Bojdo K, Frankenstein H, Kustosik N, Mstowska W, Przybylak A, Rysz J, Franczyk B. Nanotechnology and Artificial Intelligence in Dyslipidemia Management-Cardiovascular Disease: Advances, Challenges, and Future Perspectives. J Clin Med 2025; 14:887. [PMID: 39941558 PMCID: PMC11818864 DOI: 10.3390/jcm14030887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review explores emerging technologies in dyslipidemia management, focusing on nanotechnology and artificial intelligence (AI). It examines the current treatment recommendations and contrasts them with the future prospects enabled by these innovations. Nanotechnology shows significant potential in enhancing drug delivery systems, enabling more targeted and efficient lipid-lowering therapies. In parallel, AI offers advancements in diagnostics, cardiovascular risk prediction, and personalized treatment strategies. AI-based decision support systems and machine learning algorithms are particularly promising for analyzing large datasets and delivering evidence-based recommendations. Together, these technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care. In addition, this review covers key topics such as cardiovascular disease biomarkers and risk factors, providing insights into the current methods for assessing cardiovascular risk. It also discusses the current understanding of dyslipidemia, including pathophysiology and clinical management. Together, these insights and technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Kinga Bojdo
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Natalia Kustosik
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Weronika Mstowska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | | | - Jacek Rysz
- Department of Nephrology, Hypertension and Internal Medicine, Medical University of Lodz, 90-549 Łodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| |
Collapse
|
9
|
Ricci A, Stefanuto L, Gasperi T, Bruni F, Tofani D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants (Basel) 2024; 13:1516. [PMID: 39765844 PMCID: PMC11727561 DOI: 10.3390/antiox13121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The skin, being the largest organ of the human body, serves as the primary barrier against external insults, including UV radiation, pollutants, and microbial pathogens. However, prolonged exposure to these environmental stressors can lead to the generation of reactive oxygen species (ROS), causing oxidative stress, inflammation, and ultimately, skin aging and diseases. Antioxidants play a crucial role in neutralizing ROS and preserving skin health by preventing oxidative damage. In recent years, nanotechnology has emerged as a powerful tool for enhancing the delivery of antioxidants onto the skin. In particular, liposomal formulations have offered unique advantages such as improved stability, controlled release, and enhanced penetration through the skin barrier. This has led to a surge in research focused on developing liposomal-based antioxidant delivery systems tailored for skin health applications. Through a comprehensive analysis of the literature from the 2019-2024 period, this review provides an overview of emerging trends in the use of liposomal delivery systems developed for antioxidants aimed at improving skin health. It explores the latest advancements in liposomal formulation strategies, vesicle characterization, and their applications in delivering antioxidants to combat oxidative stress-induced skin damage and other associated skin pathologies. A comparison of various delivery systems is conducted for the most common antioxidants. Finally, a brief analysis of lipid nanovesicles used in the cosmeceutical industry is provided.
Collapse
Affiliation(s)
- Agnese Ricci
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Luca Stefanuto
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Tecla Gasperi
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Fabio Bruni
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Daniela Tofani
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| |
Collapse
|
10
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
11
|
Gökçe HB, Aslan İ. Novel Liposome-Gel Formulations Containing a Next Generation Postbiotic: Characterization, Rheological, Stability, Release Kinetic, and In Vitro Antimicrobial Activity Studies. Gels 2024; 10:746. [PMID: 39590102 PMCID: PMC11593572 DOI: 10.3390/gels10110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, in addition to the positive effects of probiotics and prebiotics on health, increasing research has shown that postbiotics also have significant potential in the health field. Postbiotics are bioactive components produced by probiotic bacteria during fermentation and may exhibit antimicrobial activity. This study investigated the antimicrobial effects of liposomal postbiotics formulated in gel. Various postbiotic-containing liposomal systems have been developed and optimized to prepare formulations. Optimized liposomes and liposomal postbiotic-containing gel forms were examined in terms of particle size, polydispersity index, zeta potential, structural properties, encapsulation efficiency, permeability, release profiles, and stability. Finally, the antimicrobial activities of the postbiotics and the optimum gel formulation LG1 were evaluated on Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Enterococcus hirae, and Candida albicans strains using disk diffusion and microdilution methods. The optimum liposome formulation L1 was determined to have a particle size of 185.32 ± 0.80 nm, a polydispersity index of 0.206 ± 0.012, a zeta potential of 35.0 ± 0.5 mV, and an encapsulation efficiency of 17.52%. Its permeability was determined as 51.52% at the end of 6 h. In vitro release studies showed that the drug release profile was in accordance with first-order kinetics and suitable for controlled release. The findings show that formulated postbiotics have similar antimicrobial activity to free postbiotics. These results suggest that liposomal gel formulations support the antimicrobial effects of postbiotics while providing advantages of use. In conclusion, the findings contribute to a better understanding of the antimicrobial potential of postbiotics and lipogelosomal postbiotics and optimize their use in pharmaceutical applications.
Collapse
Affiliation(s)
- Halise Betül Gökçe
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - İsmail Aslan
- Department of Pharmaceutical Technology, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| |
Collapse
|
12
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
13
|
Vasileva LA, Gaynanova GA, Romanova EA, Petrov KA, Feng C, Zakharova LY, Sinyashin OG. Supramolecular approach to the design of nanocarriers for antidiabetic drugs: targeted patient-friendly therapy. RUSSIAN CHEMICAL REVIEWS 2024; 93:RCR5150. [DOI: 10.59761/rcr5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes and its complications derived are among serious global health concerns that critically deteriorate the quality of life of patients and, in some cases, result in lethal outcome. Herein, general information on the pathogenesis, factors aggravating the course of the disease and drugs used for the treatment of two types of diabetes are briefly discussed. The aim of the review is to introduce supramolecular strategies that are currently being developed for the treatment of diabetes mellitus and that present a very effective alternative to chemical synthesis, allowing the fabrication of nanocontainers with switchable characteristics that meet the criteria of green chemistry. Particular attention is paid to organic (amphiphilic and polymeric) formulations, including those of natural origin, due to their biocompatibility, low toxicity, and bioavailability. The advantages and limitations of different nanosystems are discussed, with emphasis on their adaptivity to noninvasive administration routes.<br>The bibliography includes 378 references.
Collapse
Affiliation(s)
- L. A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - G. A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - E. A. Romanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - K. A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Ch. Feng
- Shanghai Jiao Tong University, Shanghai, China
| | - L. Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - O. G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
14
|
Salavati M, Arabshomali A, Nouranian S, Shariat-Madar Z. Overview of Venous Thromboembolism and Emerging Therapeutic Technologies Based on Nanocarriers-Mediated Drug Delivery Systems. Molecules 2024; 29:4883. [PMID: 39459251 PMCID: PMC11510185 DOI: 10.3390/molecules29204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Venous thromboembolism (VTE) is a serious health condition and represents an important cause of morbidity and, in some cases, mortality due to the lack of effective treatment options. According to the Centers for Disease Control and Prevention, 3 out of 10 people with VTE will have recurrence of a clotting event within ten years, presenting a significant unmet medical need. For some VTE patients, symptoms can last longer and have a higher than average risk of serious complications; in contrast, others may experience complications arising from insufficient therapies. People with VTE are initially treated with anticoagulants to prevent conditions such as stroke and to reduce the recurrence of VTE. However, thrombolytic therapy is used for people with pulmonary embolism (PE) experiencing low blood pressure or in severe cases of DVT. New drugs are under development, with the aim to ensure they are safe and effective, and may provide an additional option for the treatment of VTE. In this review, we summarize all ongoing trials evaluating anticoagulant interventions in VTE listed in clinicaltrials.gov, clarifying their underlying mechanisms and evaluating whether they prevent the progression of DVT to PE and recurrence of thrombosis. Moreover, this review summarizes the available evidence that supports the use of antiplatelet therapy for VTE. Since thrombolytic agents would cause off-target effects, targeted drug delivery platforms are used to develop various therapeutics for thrombotic diseases. We discuss the recent advances achieved with thrombus-targeting nanocarriers as well as the major challenges associated with the use of nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Masoud Salavati
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Arman Arabshomali
- Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
15
|
Porbaha P, Ansari R, Kiafar MR, Bashiry R, Khazaei MM, Dadbakhsh A, Azadi A. A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles. AAPS PharmSciTech 2024; 25:208. [PMID: 39237678 DOI: 10.1208/s12249-024-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.
Collapse
Affiliation(s)
- Pedram Porbaha
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Rahman Bashiry
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
16
|
Chu C, Qiu J, Zhao Q, Xun X, Wang H, Yuan R, Xu X. Injectable dual drug-loaded thermosensitive liposome-hydrogel composite scaffold for vascularised and innervated bone regeneration. Colloids Surf B Biointerfaces 2024; 245:114203. [PMID: 39241633 DOI: 10.1016/j.colsurfb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Adequate blood supply and thorough innervation are essential to the survival of tissue-engineered bones. Though great progress has been created in the application of bone tissue engineering technology to bone defect repair, many challenges remain, such as insufficient vascularisation and deficient innervation in newly regenerated bone. In the present study, we addressed these challenges by manipulating the bone regeneration microenvironment in terms of vascularisation and innervation. We used a novel injectable thermosensitive liposome-hydrogel composite scaffold as a sustained-release carrier for basic fibroblast growth factor (bFGF, which promotes angiogenesis and neurogenic differentiation) and dexamethasone (Dex, which promotes osteogenic differentiation). In vitro biological assessment demonstrated that the composite scaffold had sufficient cell compatibility; it enhanced the capacity for angiogenesis in human umbilical vein endothelial cells, and the capacity for neurogenic/osteogenic differentiation in human bone marrow mesenchymal stem cells. Moreover, the introduction of bFGF/Dex liposome-hydrogel composite scaffold to bone defect sites significantly improved vascularisation and innervated bone regeneration properties in a rabbit cranial defect model. Based on our findings, the regeneration of sufficiently vascularised and innervated bone tissue through a sustained-release scaffold with excellent injectability and body temperature sensitivity represents a promising tactic towards bone defect repair.
Collapse
Affiliation(s)
- Chen Chu
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Jianzhong Qiu
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China
| | - Qian Zhao
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Xingxiang Xun
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China
| | - Hejing Wang
- Qingdao West Coast New Area People's Hospital, Qingdao 266499, PR China
| | - Rongtao Yuan
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China.
| | - Xiao Xu
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China.
| |
Collapse
|
17
|
Chu B, Chen D, Ma S, Yang Y, Shang F, Lv W, Li Y. Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis. J Biomater Appl 2024; 39:221-234. [PMID: 38820587 DOI: 10.1177/08853282241258311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL. METHODS PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL. RESULTS The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties. CONCLUSION This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.
Collapse
Affiliation(s)
- Bo Chu
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Senlin Ma
- Department of Emergency Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Yang
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Wei Lv
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Jain S, Sahu N, Bhatia D, Yadav P. Cellular uptake and viability switching in the properties of lipid coated carbon quantum dots for potential bioimaging and therapeutics. NANOSCALE ADVANCES 2024:d4na00306c. [PMID: 39170765 PMCID: PMC11333955 DOI: 10.1039/d4na00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Carbon quantum dots derived from mango leaves exhibited red fluorescence. These negatively charged particles underwent coating with the positively charged lipid molecule N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). However, the bioconjugate displayed reduced uptake compared to the standalone mQDs in cancer cells (SUM 159A), and increased uptake in case of non-cancerous (RPE-1) cells. Upon in vitro testing, the bioconjugate demonstrated a mitigating effect on the individual toxicity of both DOTMA and mQDs in SUM-159 (cancerous cells). Conversely, it exhibited a proliferative effect on RPE-1 (normal cells).
Collapse
Affiliation(s)
- Sweny Jain
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nidhi Sahu
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra Ranchi Jharkhand-835 215 India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
19
|
Constantinou C, Meliou K, Skouras A, Siafaka P, Christodoulou P. Liposomes against Alzheimer's Disease: Current Research and Future Prospects. Biomedicines 2024; 12:1519. [PMID: 39062092 PMCID: PMC11275096 DOI: 10.3390/biomedicines12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease, the most common neurodegenerative disease, affects more than 60 million people worldwide, a number that is estimated to double by 2050. Alzheimer's disease is characterized by progressive memory loss, the impairment of behavior, and mood changes, as well as the disturbed daily routine of the patient. Although there are some active molecules that can be beneficial by halting the progression of the disease, the blood-brain barrier and other physiological barriers hinder their delivery and, consequently, the appropriate management of the disease. Therefore, drug delivery systems that effectively target and overcome the blood-brain barrier to reach the targeted brain area would improve treatment effectiveness. Liposomes are lipophilic carriers that consist of a phospholipid bilayer structure, simulating the physiological lipidic layer of the blood-brain barrier and enabling better delivery of the drug to the brain. Given that pure liposomes may have less targeting affinity than functionalized liposomes, modification with groups such as lactoferrin, poly(ethylene glycol), and transferrin may improve specificity. In this mini-review, we summarize the literature on the use of liposomes for the treatment of Alzheimer's disease, focusing on the functionalization moieties of liposomes. In addition, challenges in brain delivery are also discussed.
Collapse
Affiliation(s)
- Christiana Constantinou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Katerina Meliou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Athanasios Skouras
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece;
| | - Panoraia Siafaka
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | | |
Collapse
|
20
|
Wu A, Shi H, Yang L, Zhang H, Nan X, Zhang D, Zhang Z, Zhang C, Chen S, Fu X, Ou L, Wang L, Shi Y, Liu H. In Vitro and In Vivo Evaluation of Lactoferrin-Modified Liposomal Etomidate with Enhanced Brain-Targeting Effect for General Anesthesia. Pharmaceutics 2024; 16:805. [PMID: 38931926 PMCID: PMC11207770 DOI: 10.3390/pharmaceutics16060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Etomidate is a general anesthetic that has shown good hemodynamic stability without significant cardiovascular or respiratory depression. Despite several kinds of dosage forms having been reported for this drug, formulation types are very limited in clinical practice, and brain-targeted formulations for this central nervous system (CNS) drug have been rarely reported. Moreover, studies on the biocompatibility, toxicity, and anesthetic effects of the etomidate preparations in vivo were inadequate. The present study was to develop lactoferrin-modified liposomal etomidate (Eto-lip-LF) for enhanced drug distribution in the brain and improved anesthetic effects. Eto-lip-LF had good stability for storage and hemocompatibility for intravenous injection. Compared with the non-lactoferrin-containing liposomes, the lactoferrin-modified liposomes had notably enhanced brain-targeting ability in vivo, which was probably realized by the binding of transferrin with the transferrin and lactoferrin receptors highly distributed in the brain. Eto-lip-LF had a therapeutic index of about 25.3, higher than that of many other general anesthetics. Moreover, compared with the commercial etomidate emulsion, Eto-lip-LF could better achieve rapid onset of general anesthesia and rapid recovery from anesthesia, probably due to the enhanced drug delivery to the brain. The above results demonstrated the potential of this lactoferrin-modified liposomal etomidate to become an alternative preparation for clinical general anesthesia.
Collapse
Affiliation(s)
- Ailing Wu
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang 641100, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646699, China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Lilan Ou
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Lulu Wang
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Yanyan Shi
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou 646699, China
| |
Collapse
|
21
|
Rudzińska M, Grygier A, Knight G, Kmiecik D. Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods 2024; 13:1814. [PMID: 38928757 PMCID: PMC11202941 DOI: 10.3390/foods13121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This article provides an overview of the literature data on the role of liposomal structures and encapsulated substances in food technology and human nutrition. The paper briefly describes how liposomes are created and how they encapsulate food ingredients, which can either be individual compounds or plant extracts. Another very interesting application of liposomes is their use as antimicrobial carriers to protect food products from spoilage during storage. The encapsulation of food ingredients in liposomes can increase their bioavailability, which is particularly important for compounds with health-promoting properties but low bioavailability. Particular attention was paid to compounds such as phytosterols, which lower blood cholesterol levels but have very low absorption in the human body. In addition, consumer expectations and regulations for liposomes in food are discussed. To date, no in vivo human studies have been conducted to indicate which encapsulation methods give the best results for gastrointestinal effects and which food-added substances are most stable during food storage and processing. The paper identifies further lines of research that are needed before liposomes can be introduced into food.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, University of Life Sciences, 60-637 Poznań, Poland; (A.G.); (G.K.); (D.K.)
| | | | | | | |
Collapse
|
22
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
24
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|