1
|
Zhao J, Liu L, Wang T, Wang X, Du X, Hao R, Liu J, Zhang J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094339. [PMID: 37177540 PMCID: PMC10181755 DOI: 10.3390/s23094339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Quantitative phase imaging and measurement of surface topography and fluid dynamics for objects, especially for moving objects, is critical in various fields. Although effective, existing synchronous phase-shifting methods may introduce additional phase changes in the light field due to differences in optical paths or need specific optics to implement synchronous phase-shifting, such as the beamsplitter with additional anti-reflective coating and a micro-polarizer array. Therefore, we propose a synchronous phase-shifting method based on the Mach-Zehnder interferometer to tackle these issues in existing methods. The proposed method uses common optics to simultaneously acquire four phase-shifted digital holograms with equal optical paths for object and reference waves. Therefore, it can be used to reconstruct the phase distribution of static and dynamic objects with high precision and high resolution. In the experiment, the theoretical resolution of the proposed system was 1.064 µm while the actual resolution could achieve 1.381 µm, which was confirmed by measuring a phase-only resolution chart. Besides, the dynamic phase imaging of a moving standard object was completed to verify the proposed system's effectiveness. The experimental results show that our proposed method is suitable and promising in dynamic phase imaging and measurement of moving objects using phase-shifting digital holography.
Collapse
Affiliation(s)
- Jiaxi Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianhe Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiangzhou Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaohui Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruqian Hao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanxiu Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Liu H, Wu X, Liu G, Ren H, R V V, Chen Z, Pu J. Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100400. [PMID: 35285152 DOI: 10.1002/jbio.202100400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Quantitative phase microscopy (QPM) has been emerged as an indispensable diagnostic and characterization tool in biomedical imaging with its characteristic nature of label-free, noninvasive, and real time imaging modality. The integration of holography to the conventional microscopy opens new advancements in QPM featuring high-resolution and quantitative three-dimensional image reconstruction. However, the holography schemes suffer in space-bandwidth and time-bandwidth issues in the off-axis and phase-shifting configuration, respectively. Here, we introduce an on-axis phase-shifting holography based QPM system with single-shot imaging capability. The technique utilizes the Fizeau interferometry scheme in combination with polarization phase-shifting and space-division multiplexing to achieve the single-shot recording of the multiple phase-shifted holograms. Moreover, the high-speed imaging capability with instantaneous recording of spatially phase shifted holograms offers the flexible utilization of the approach in dynamic quantitative phase imaging with robust phase stability. We experimentally demonstrated the validity of the approach by quantitative phase imaging and depth-resolved imaging of paramecium cells. Furthermore, the technique is applied to the phase imaging and quantitative parameter estimation of red blood cells. This integration of a Fizeau-based phase-shifting scheme to the optical microscopy enables a simple and robust tool for the investigations of engineered and biological specimen with real-time quantitative analysis.
Collapse
Affiliation(s)
- Hanzi Liu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Guodong Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Hongliang Ren
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Vinu R V
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Ziyang Chen
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Jixiong Pu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Pixel Resolution Imaging in Parallel Phase-Shifting Digital Holography. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parallel phase-shifting digital holography (PPSDH) employing a polarization image sensor can suppress zero-order and twin-image noise through a single exposure, achieve instantaneous measurement of complex-valued dynamic objects, and have broad applications in the areas of biomedicine, etc. To improve the imaging resolution of PPSDH, we propose an oversampled super-pixel image reconstruction method, which can be expressed as the implementation of nearest-neighbor interpolation to replace blank pixels in sparse sub-phase-shift holograms. We found experimentally that the maximum spatial lateral resolution of the reconstructed image based on the existing super-pixel method, B-spline, bicubic, bilinear, and the proposed nearest-neighbor interpolation was 12.4 µm, 11.4 µm, 9.8 µm, 8.8 µm, and 7.8 µm, respectively. The main reason for not reaching the ideal value of 6.9 µm was the inherent residual zero-order and twin-image noise, which needs to be removed in the future.
Collapse
|