1
|
Gao HC, Xu F, Cheng X, Bi C, Zheng Y, Li Y, Chen T, Li Y, Chubykin AA, Huang F. Interferometric Ultra-High Resolution 3D Imaging through Brain Sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636258. [PMID: 39975253 PMCID: PMC11838448 DOI: 10.1101/2025.02.03.636258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single-molecule super-resolution microscopy allows pin-pointing individual molecular positions in cells with nanometer precision. However, achieving molecular resolution through tissues is often difficult because of optical scattering and aberrations. We introduced 4Pi single-molecule nanoscopy for brain with in-situ point spread function retrieval through opaque tissue (4Pi-BRAINSPOT), integrating 4Pi single-molecule switching nanoscopy with dynamic in-situ coherent PSF modeling, single-molecule compatible tissue clearing, light-sheet illumination, and a novel quantitative analysis pipeline utilizing the highly accurate 3D molecular coordinates. This approach enables the quantification of protein distribution with sub-15-nm resolution in all three dimensions in complex tissue specimens. We demonstrated 4Pi-BRAINSPOT's capacities in revealing the molecular arrangements in various sub-cellular organelles and resolved the membrane morphology of individual dendritic spines through 50-μm transgenic mouse brain slices. This ultra-high-resolution approach allows us to decipher nanoscale organelle architecture and molecular distribution in both isolated cells and native tissue environments with precision down to a few nanometers.
Collapse
Affiliation(s)
- Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Cheng
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yue Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yilun Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tailong Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Senftleben ML, Bajor A, Hirata E, Abrahamsson S, Brismar H. Fast volumetric multifocus structured illumination microscopy of subcellular dynamics in living cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:2281-2292. [PMID: 38633103 PMCID: PMC11019691 DOI: 10.1364/boe.516261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Studying the nanoscale dynamics of subcellular structures is possible with 2D structured illumination microscopy (SIM). The method allows for acquisition with improved resolution over typical widefield. For 3D samples, the acquisition speed is inherently limited by the need to acquire sequential two-dimensional planes to create a volume. Here, we present a development of multifocus SIM designed to provide high volumetric frame rate by using fast synchronized electro-optical components. We demonstrate the high volumetric imaging capacity of the microscope by recording the dynamics of microtubule and endoplasmatic reticulum in living cells at up to 2.3 super resolution volumes per second for a total volume of 30 × 30 × 1.8 µm3.
Collapse
Affiliation(s)
- Maximilian Lukas Senftleben
- Department of Applied Physics, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Antone Bajor
- Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, 95064, CA, USA
| | - Eduardo Hirata
- Department of Applied Physics, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Sara Abrahamsson
- Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, 95064, CA, USA
| | - Hjalmar Brismar
- Department of Applied Physics, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
3
|
Paul TC, Hagen G. Improving optical sectioning with spinning disk structured illumination microscopy. OPTICS EXPRESS 2023; 31:38831-38839. [PMID: 38017977 DOI: 10.1364/oe.499277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
A new fluorescence microscopy technique for optical sectioning was investigated. This technique combined Spinning Disk microscopy (SD) with Structured Illumination Microscopy (SIM), resulting in more background removal than either method. Spinning Disk Structured Illumination Microscopy (SD-SIM) resulted in higher signal-to-background ratios. The method detected and quantified a dendritic spine neck that was impossible to detect with either SIM or SD alone.
Collapse
|
4
|
Zhao B, Koyama M, Mertz J. High-resolution multi-z confocal microscopy with a diffractive optical element. BIOMEDICAL OPTICS EXPRESS 2023; 14:3057-3071. [PMID: 37342696 PMCID: PMC10278611 DOI: 10.1364/boe.491538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
There has been recent interest in the development of fluorescence microscopes that provide high-speed volumetric imaging for life-science applications. For example, multi-z confocal microscopy enables simultaneous optically-sectioned imaging at multiple depths over relatively large fields of view. However, to date, multi-z microscopy has been hampered by limited spatial resolution owing to its initial design. Here we present a variant of multi-z microscopy that recovers the full spatial resolution of a conventional confocal microscope while retaining the simplicity and ease of use of our initial design. By introducing a diffractive optical element in the illumination path of our microscope, we engineer the excitation beam into multiple tightly focused spots that are conjugated to axially distributed confocal pinholes. We discuss the performance of this multi-z microscope in terms of resolution and detectability and demonstrate its versatility by performing in-vivo imaging of beating cardiomyocytes in engineered heart tissues and neuronal activity in c. elegans and zebrafish brains.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Electrical and Computer Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Minoru Koyama
- Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Scarborough, ON M1C1A4, Canada
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|