1
|
Wang L, Cui J, Zhang N, Wang X, Su J, Vallés MP, Wu S, Yao W, Chen X, Chen D. OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. PLANT MOLECULAR BIOLOGY 2024; 114:91. [PMID: 39172289 DOI: 10.1007/s11103-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.
Collapse
Affiliation(s)
- Lina Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Cui
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueqin Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - María Pilar Vallés
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), Zaragoza, 50059, Spain
| | - Shian Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Yao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
3
|
Nassarawa IS, Li Z, Xue L, Li H, Muhammad U, Zhu S, Chen J, Zhao T. Zinc Oxide Nanoparticles and Zinc Sulfate Alleviate Boron Toxicity in Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1184. [PMID: 38732398 PMCID: PMC11085453 DOI: 10.3390/plants13091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Boron toxicity significantly hinders the growth and development of cotton plants, therefore affecting the yield and quality of this important cash crop worldwide. Limited studies have explored the efficacy of ZnSO4 (zinc sulfate) and ZnO nanoparticles (NPs) in alleviating boron toxicity. Nanoparticles have emerged as a novel strategy to reduce abiotic stress directly. The precise mechanism underlying the alleviation of boron toxicity by ZnO NPs in cotton remains unclear. In this study, ZnO NPs demonstrated superior potential for alleviating boron toxicity compared to ZnSO4 in hydroponically cultivated cotton seedlings. Under boron stress, plants supplemented with ZnO NPs exhibited significant increases in total fresh weight (75.97%), root fresh weight (39.64%), and leaf fresh weight (69.91%). ZnO NPs positively affected photosynthetic parameters and SPAD values. ZnO NPs substantially reduced H2O2 (hydrogen peroxide) by 27.87% and 32.26%, MDA (malondialdehyde) by 27.01% and 34.26%, and O2- (superoxide anion) by 41.64% and 48.70% after 24 and 72 h, respectively. The application of ZnO NPs increased the antioxidant activities of SOD (superoxide dismutase) by 82.09% and 76.52%, CAT (catalase) by 16.79% and 16.33%, and POD (peroxidase) by 23.77% and 21.66% after 24 and 72 h, respectively. ZnO NP and ZnSO4 application demonstrated remarkable efficiency in improving plant biomass, mineral nutrient content, and reducing boron levels in cotton seedlings under boron toxicity. A transcriptome analysis and corresponding verification revealed a significant up-regulation of genes encoding antioxidant enzymes, photosynthesis pathway, and ABC transporter genes with the application of ZnO NPs. These findings provide valuable insights for the mechanism of boron stress tolerance in cotton and provide a theoretical basis for applying ZnO NPs and ZnSO4 to reduce boron toxicity in cotton production.
Collapse
Affiliation(s)
- Ismail Sanusi Nassarawa
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Zhuolin Li
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Longshuo Xue
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Uzair Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| |
Collapse
|
4
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
5
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
6
|
Xu N, Song Y, Zheng C, Li S, Yang Z, Jiang M. Indole-3-acetic acid and zinc synergistically mitigate positively charged nanoplastic-induced damage in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131637. [PMID: 37210880 DOI: 10.1016/j.jhazmat.2023.131637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Recent research has shown that polystyrene nanoplastics (PS-NPs) can inhibit plant growth and the development of crops, such as rice. In this study, we aimed to investigate the effects of PS-NPs of different particle sizes (80 nm, 200 nm, and 2 µm) and charges (negative, neutral, and positive) on rice growth, and to explore the underlying mechanisms and potential strategies for mitigating their impacts. Two-week-old rice plants were planted in a standard ½ Murashige-Skoog liquid medium holding 50 mg/L of different particle sizes and/or charged PS-NPs for 10 days, and the liquid medium without PS-NPs was used as control. The results showed that positively charged PS-NPs (80 nm PS-NH2) had the greatest impact on plant growth and greatly reduced the dry biomass, root length, and plant height of rice by 41.04%, 46.34%, and 37.45%, respectively. The positively charged NPs with a size of 80 nm significantly decreased the zinc (Zn) and indole-3-acetic acid (IAA, auxin) contents by 29.54% and 48.00% in roots, and 31.15% and 64.30% in leaves, respectively, and down-regulated the relative expression level of rice IAA response and biosynthesis genes. Moreover, Zn and/or IAA supplements significantly alleviated the adverse effects of 80 nm PS-NH2 on rice plant growth. Exogenous Zn and/or IAA increased seedlings' growth, decreased PS-NPs distribution, maintained redox homeostasis, and improved tetrapyrrole biosynthesis in rice treated with 80 nm PS-NH2. Our findings suggest that Zn and IAA synergistically alleviate positively charged NP-induced damage in rice.
Collapse
Affiliation(s)
- Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, PR China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China; National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China; National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Zhen Yang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China.
| |
Collapse
|
7
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
8
|
Song Y, Zheng C, Li S, Chen J, Jiang M. Chitosan-Magnesium Oxide Nanoparticles Improve Salinity Tolerance in Rice ( Oryza sativa L.). ACS APPLIED MATERIALS & INTERFACES 2023; 15:20649-20660. [PMID: 37078774 DOI: 10.1021/acsami.3c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-salinity (HS) stress is a global element restricting agricultural productivity. Rice is a significant food crop, but soil salinity has a detrimental impact on its yield and product quality. Nanoparticles (NPs) have been found as a mitigation method against different abiotic stresses, even HS stress. In this study, chitosan-magnesium oxide NPs (CMgO NPs) were used as a new method for rice plants to alleviate salt stress (200 mM NaCl). The results showed that 100 mg/L CMgO NPs greatly ameliorated salt stress by enhancing the root length by 37.47%, dry biomass by 32.86%, plant height by 35.20%, and tetrapyrrole biosynthesis in hydroponically cultured rice seedlings. The application of 100 mg/L CMgO NPs greatly alleviated salt-generated oxidative stress with induced activities of antioxidative enzymes, catalase by 67.21%, peroxidase by 88.01%, and superoxide dismutase by 81.19%, and decreased contents of malondialdehyde by 47.36% and H2O2 by 39.07% in rice leaves. The investigation of ion content in rice leaves revealed that rice treated with 100 mg/L CMgO NPs maintained a noticeably higher K+ level by 91.41% and a lower Na+ level by 64.49% and consequently a higher ratio of K+/Na+ than the control under HS stress. Moreover, the CMgO NPs supplement greatly enhanced the contents of free amino acids under salt stress in rice leaves. Therefore, our findings propose that CMgO NPs supplementation could mitigate the salt stress in rice seedlings.
Collapse
Affiliation(s)
- Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jinhong Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
9
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arvas YE, Kocaçalışkan İ, Ordu E, Erişen S. Comparative retrotransposon analysis of mutant and non-mutant rice varieties grown at different salt concentrations. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2043777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yunus Emre Arvas
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Yıldız Technical University, Istanbul, Turkey
| | - İsmail Kocaçalışkan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| | - Emel Ordu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| | - Semiha Erişen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Cominelli E, Sparvoli F, Lisciani S, Forti C, Camilli E, Ferrari M, Le Donne C, Marconi S, Juan Vorster B, Botha AM, Marais D, Losa A, Sala T, Reboul E, Alvarado-Ramos K, Waswa B, Ekesa B, Aragão F, Kunert K. Antinutritional factors, nutritional improvement, and future food use of common beans: A perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:992169. [PMID: 36082303 PMCID: PMC9445668 DOI: 10.3389/fpls.2022.992169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 06/06/2023]
Abstract
Common bean seeds are an excellent source of protein as well as of carbohydrates, minerals, vitamins, and bioactive compounds reducing, when in the diet, the risks of diseases. The presence of bioactive compounds with antinutritional properties (e.g., phytic acid, lectins, raffinosaccharides, protease inhibitors) limits, however, the bean's nutritional value and its wider use in food preparations. In the last decades, concerted efforts have been, therefore, made to develop new common bean genotypes with reduced antinutritional compounds by exploiting the natural genetic variability of common bean and also applying induced mutagenesis. However, possible negative, or positive, pleiotropic effects due to these modifications, in terms of plant performance in response to stresses or in the resulting technological properties of the developed mutant genotypes, have yet not been thoroughly investigated. The purpose of the perspective paper is to first highlight the current advances, which have been already made in mutant bean characterization. A view will be further provided on future research directions to specifically explore further advantages and disadvantages of these bean mutants, their potential use in innovative foods and representing a valuable genetic reservoir of combinations to assess the true functional role of specific seed bioactive components directly in the food matrix.
Collapse
Affiliation(s)
- Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Chiara Forti
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Barend Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | | | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|