1
|
Gao W, Wu D, Zhang D, Geng Z, Tong M, Duan Y, Xia W, Chu J, Yao X. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172555. [PMID: 38677420 DOI: 10.1016/j.scitotenv.2024.172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Wang Gao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zixin Geng
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
2
|
Liu B, Mao P, Yang Q, Qin H, Xu Y, Zheng Y, Li Q. Appropriate Nitrogen form Ratio and UV-A Supplementation Increased Quality and Production in Purple Lettuce ( Lactuca sativa L.). Int J Mol Sci 2023; 24:16791. [PMID: 38069114 PMCID: PMC10705952 DOI: 10.3390/ijms242316791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Purple lettuce (Lactuca sativa L. cv. Zhongshu Purple Lettuce) was chosen as the trial material, and LED intelligent light control consoles were used as the light sources. The purpose was to increase the yield and quality of purple lettuce while lowering its nitrate level. By adding various ratios of NO3--N and NH4+-N to the nutrient solution and 20 µmol m-2 s-1 UV-A based on white, red, and blue light (130, 120, 30 µmol m-2 s-1), the effects of different NO3--N/NH4+-N ratios (NO3--N, NO3--N/NH4+-N = 3/1, NH4+-N) and UV-A interaction on yield, quality, photosynthetic characteristics, anthocyanins, and nitrogen assimilation of purple lettuce were studied. In order to produce purple lettuce hydroponically under controlled environmental conditions, a theoretical foundation and technological specifications were developed, taking into account an appropriate UV-A dose and NO3--N/NH4+-N ratio. Results demonstrate that adding a 20 µmol m-2 s-1 UV-A, and a NO3--N/NH4+-N treatment of 3/1, significantly reduced the nitrate level while increasing the growth, photosynthetic rate, chlorophyll, carotenoid, and anthocyanin content of purple lettuce. The purple leaf lettuce leaves have an enhanced capacity to absorb nitrogen. Furthermore, plants have an acceleration of nitrogen metabolism, which raises the concentration of free amino acids and soluble proteins and promotes biomass synthesis. Thus, based on the NO3--N/NH4+-N (3/1) treatment, adding 20 µmol m-2 s-1 UV-A will be helpful in boosting purple lettuce production and decreasing its nitrate content.
Collapse
Affiliation(s)
- Binbin Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Pengpeng Mao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China; (P.M.); (Y.X.)
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China;
| | - Hengshan Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Yaliang Xu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China; (P.M.); (Y.X.)
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China; (P.M.); (Y.X.)
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China; (P.M.); (Y.X.)
| |
Collapse
|
3
|
Zhou C, Li Z, Liu W, Bian Z, Lu W, Zhou B, Wang S, Li Q, Yang Q. High-Proportion Blue Light Irradiation at the End-of-Production Stage Promotes the Biosynthesis and Recycling of Ascorbate in Lettuce. Int J Mol Sci 2023; 24:16524. [PMID: 38003716 PMCID: PMC10671776 DOI: 10.3390/ijms242216524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ascorbate (AsA), an essential antioxidant for both plants and the human body, plays a vital role in maintaining proper functionality. Light plays an important role in metabolism of AsA in horticultural plants. Our previous research has revealed that subjecting lettuce to high light irradiation (HLI) (500 μmol·m-2·s-1) at the end-of-production (EOP) stage effectively enhances AsA levels, while the optimal light quality for AsA accumulation is still unknown. In this study, four combinations of red (R) and blue (B) light spectra with the ratio of 1:1 (1R1B), 2:1 (2R1B), 3:1 (3R1B), and 4:1 (4R1B) were applied to investigate the biosynthesis and recycling of AsA in lettuce. The results demonstrated that the AsA/total-AsA content in lettuce leaves was notably augmented upon exposure to 1R1B and 2R1B. Interestingly, AsA levels across all treatments increased rapidly at the early stage (2-8 h) of irradiation, while they increased slowly at the late stage (8-16 h). The activity of L-galactono-1,4-lactone dehydrogenase was augmented under 1R1B treatment, which is pivotal to AsA production. Additionally, the activities of enzymes key to AsA cycling were enhanced by 1R1B and 2R1B treatments, including ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. Notably, hydrogen peroxide and malondialdehyde accumulation increased dramatically following 16 h of 1R1B and 2R1B treatments. In addition, although soluble sugar and starch contents were enhanced by EOP-HLI, this effect was comparatively subdued under the 1R1B treatment. Overall, these results indicated that AsA accumulation was improved by irradiation with a blue light proportion of over 50% in lettuce, aligning with the heightened activities of key enzymes responsible for AsA synthesis, as well as the accrual of hydrogen peroxide. The effective strategy holds the potential to enhance the nutritional quality of lettuce while bolstering its antioxidant defenses.
Collapse
Affiliation(s)
- Chengbo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Zonggeng Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhonghua Bian
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611134, China;
| | - Bo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Sen Wang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| |
Collapse
|
4
|
Ren M, Liu S, Mao G, Tang C, Gai P, Guo X, Zheng H, Wang W, Tang Q. Simultaneous Application of Red and Blue Light Regulate Carbon and Nitrogen Metabolism, Induces Antioxidant Defense System and Promote Growth in Rice Seedlings under Low Light Stress. Int J Mol Sci 2023; 24:10706. [PMID: 37445882 DOI: 10.3390/ijms241310706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study is to determine the effect of light quality on growth, carbon and nitrogen metabolism, and antioxidant defense system of rice seedlings. Six light conditions were employed, including white (W), red (R), blue (B), combined LED of R and B at 3:1 (R3B1), combined LED of R and B at 1:1 (R1B1), as well as combined LED of R and B at 1:3 (R1B3). Combined application of red light and blue light could promote the growth of rice seedling leaves and roots under low light stress to varying degrees, increase the photosynthetic area by increasing the leaf area, improve the root characteristics by increasing the root volume, and increase the dry matter accumulation of rice seedlings. In addition, the combination of red light and blue light could increase carbon and nitrogen metabolites in rice seedling leaves, regulate the expression of genes related to carbon and nitrogen metabolism and enzyme activity, and enhance the antioxidant enzyme activity of rice seedlings. These results indicate that red light and blue light directly have synergistic effects which can regulate the carbon and nitrogen metabolism of rice seedlings, promote the morphogenesis of rice seedlings under low light stress, and promote growth, which has never been reported in previous studies. This study is a new discovery in the application of light quality in crop production and provides new avenues to enhance crop stress resistance. However, further study is needed to explore the physio-biochemical and molecular mechanisms of light quality in crop production.
Collapse
Affiliation(s)
- Maofei Ren
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shanzhen Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Guiling Mao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Chengzhu Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Panpan Gai
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Weiqin Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Growth and Carotenoid Contents of Intercropped Vegetables in Building-Integrated Urban Agriculture. J FOOD QUALITY 2021. [DOI: 10.1155/2021/1159567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sustainable food security due to climate and social change is more important than ever. This study was conducted to increase plant growth and bioactive contents using intercropping technology in urban agriculture. Tomatoes (Solanum lycopersicum L.) and sunflowers (Helianthus annuus L.) were intercropped in different ratios in outdoor rooftop, and lettuce (Lactuca savita L.) was grown with chicory (Cichorium intybus. L.) in the indoor LED plant growth chambers. Carotenoids in plant foods were analyzed using an ultraperformance liquid chromatography with photodiode array detection. Chlorophyll contents were determined by the soil analysis development chlorophyll meter. Tomatoes planted with sunflowers (3 : 1) had a significantly larger stem diameter (
), a large number of leaves (
), and significantly higher lycopene at d88 (
), d102 (
), and d115 (
), and β-carotene contents at d102 (
) as compared to those of monocultured tomatoes. Lettuce planted in a ratio of 1 : 3 with lettuce and chicory had significantly higher contents of chlorophyll (
), β-carotene (
), and lutein (
), than lettuce planted alone. On the other hand, intercropping of chicory and lettuce did not have a beneficial effect on the growth and carotenoid content of chicory. The current study indicates that plant growth and carotenoid content can be substantially modified by cocultivation, and the effects may vary depending on the type of plant and the crop ratio.
Collapse
|