1
|
Li Q, Niu M, Jia C, Xu Y, Zhao S. Enhancement on the solubility of polyploid and diploid rice proteins by enzymatic hydrolysis: From structural and functional characteristics of rice protein hydrolysates. Int J Biol Macromol 2025; 307:142235. [PMID: 40107562 DOI: 10.1016/j.ijbiomac.2025.142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Polyploid rice protein (PRP) has the advantage of high nutritional value, but its functional properties are minimal due to its poor solubility. This work aims to improve the solubility of PRP through enzymatic hydrolysis and assess the effect of hydrolysis time (5-330 min) and protease type (Alcalase, Neutrase, and Trypsin) on the structural, functional, and antioxidant properties of PRP hydrolysates (PRPHs). Compared to PRP, PRPHs exhibited significantly decreased free sulfhydryl content and surface hydrophobicity and improved structural flexibility, regardless of the protease used. With increasing time, the nitrogen solubility index of the hydrolysates increased by 25.01 %, which was attributed to the reduction in molecular weight (< 15 kDa). The highest emulsifying activity (48.81 m2/g) and hydroxyl radical scavenging activity (IC50 of 5.49 mg/mL) were observed from Neutrase hydrolysates at 210 min and 330 min, respectively. Trypsin hydrolysate at 210 min demonstrated the lowest IC50 (0.17 mg/mL) in ABTS+. Moreover, compared to diploid rice protein hydrolysates (DRPHs) obtained under the same conditions, PRPHs by all proteases exhibited superior functional and antioxidant properties and richer amino acid content. This study showed the potential of PRPHs applied to functional foods with favorable functional and antioxidant properties.
Collapse
Affiliation(s)
- Qiong Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Niu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Caihua Jia
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Xu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Bharati R, Shmeit YH, Šedivá JH, Cong TTN, Kundu JK, Severová L, Svoboda R, Fernández-Cusimamani E. Comparative assessment of morphological, cytological, and photosynthetic characteristics of the induced octoploid and its tetraploid counterpart of Celosia argentea L. BMC PLANT BIOLOGY 2024; 24:1227. [PMID: 39709350 DOI: 10.1186/s12870-024-05973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Celosia argentea is a widely recognized plant for its ornamental qualities and therapeutic uses in traditional medicine. As demand for such multipurpose plants grows, enhancing its phenotypic and physiological traits could further expand its commercial potential. Polyploidization, particularly through chemical treatments like oryzalin, offers a method to induce genetic variation and potentially improve desirable traits in plants. RESULTS Tetraploid (2n = 4×= 36) nodal segments of C. argentea were treated with oryzalin under in vitro conditions, resulting in successful induction of octoploidy (2n = 8×= 72). Flow cytometry and chromosome counting confirmed polyploidization, with the highest induction rate achieved using 40 µM oryzalin for 24 h. Comparative analyses between octoploid and tetraploid plants revealed significant differences in morphological traits, including increased stem and leaf thickness, larger leaf area, inflorescence characteristics and more compact growth in the octoploids. Additionally, octoploids exhibited enhanced chlorophyll content and altered photosynthetic characteristics, along with notable changes in stomatal size and density. Ploidy stability was maintained across generations, ensuring the heritability of the induced traits. CONCLUSIONS In vitro polyploidization in C. argentea led to significant phenotypic and physiological improvements, demonstrating its potential for application in ornamental horticulture and plant breeding. This research contributes to the understanding of the impact of in vitro polyploidization on plant development, offering insights for the commercial cultivation and enhancement of C. argentea. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Yamen Homaidan Shmeit
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Jana Hanzal Šedivá
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Publ. Res. Inst, Květnové square 391, Průhonice, 252 43, Czech Republic
| | - Tomáš Thanh Nguyen Cong
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions, Crop Research Institute, Drnovská 507, Prague 6, 16106, Czech Republic
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Roman Svoboda
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic.
| |
Collapse
|
3
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Xiao J, Xiong Z, Huang J, Zhang Z, Cai D, Xiong D, Cui K, Peng S, Huang J. Differences in Grain Yield and Nitrogen Uptake between Tetraploid and Diploid Rice: The Physiological Mechanisms under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2884. [PMID: 39458831 PMCID: PMC11510817 DOI: 10.3390/plants13202884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In this study, we investigated the effects of different nitrogen application and planting density treatments on the growth, development, yield, and nitrogen utilization in tetraploid (represented by T7, an indica-japonica conventional allotetraploid rice) and diploid rice (Fengliangyou-4, represented by FLY4, a two-line super hybrid rice used as a reference variety for the approval of super rice with a good grain yield performance). The results indicated that the highest grain-filling rate of T7 could reach 77.8% under field experimental conditions due to advancements in tetraploid rice breeding. This is a significant improvement compared with the rate seen in previous research. Under the same conditions, T7 exhibited a significantly lower grain yield than FLY4, which could be attributed to its lower grain-filling rate, spikelets per panicle, panicle number m-2, and harvest index score. Nitrogen application and planting density displayed little effect on the grain yield of both genotypes. A higher planting density significantly enhanced the leaf area index and biomass accumulation, but decreased the harvest index score. Compared with T7, FLY4 exhibited a significantly higher nitrogen use efficiency (NUEg), which was mainly due to the higher nitrogen content in the straw. Increasing nitrogen application significantly decreased NUEg due to its minimal effect on grain yield combined with its significant enhancement of nitrogen uptake. Our results suggest that the yield and grain-filling rate of T7 have been improved compared with those of previously tested polyploid rice, but are still lower than those of FLY4, and the yield of tetraploid rice can be further improved by enhancing the grain-filling rate, panicle number m-2, and spikelets per panicle via genotype improvement.
Collapse
Affiliation(s)
- Jian Xiao
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Zhuang Xiong
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Jiada Huang
- College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Zuolin Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Detian Cai
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| |
Collapse
|
5
|
Zhang Y, Du A, Tong L, Yan G, Lu L, Yin Y, Fu X, Yang H, Li H, Huang W, Cai D, Song Z, Zhang X, He Y, Tu S. Genome Resequencing for Autotetraploid Rice and Its Closest Relatives Reveals Abundant Variation and High Potential in Rice Breeding. Int J Mol Sci 2024; 25:9012. [PMID: 39201698 PMCID: PMC11354466 DOI: 10.3390/ijms25169012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, Y Liang You Duo Hui 14 (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2). Furthermore, we comparatively analyzed the important agronomic traits and genome-wide variations of those closest relatives, Haitian diploid (HT2), Haitian tetraploid (HT4), HTRM2, and HTRM12 in detail, based on multiple phenotypic investigations, genome resequencing, and bioinformatics analysis. The results of agronomic traits analysis and genome-wide variation analysis of single nucleotide polymorphism (SNP), insertion-deletion (InDel), and copy number variation (CNV) show that HT4 and HTRM2 had abundant phenotypic and genomic variations compared to HT2. HTRM2 can inherit important traits and variations from HT4. This implies that tetraploid self-reverted diploid has high potential in creating excellent breeding materials and in breeding breakthrough hybrid rice varieties. Our study verifies the feasibility that polyploid rice could be used as a mutation carrier for creating variations and provides genomic information, new breeding materials, and a new way of application for tetraploid rice breeding.
Collapse
Affiliation(s)
- Yachun Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Liqi Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Gui Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanni Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Detian Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Lv Z, Addo Nyarko C, Ramtekey V, Behn H, Mason AS. Defining autopolyploidy: Cytology, genetics, and taxonomy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16292. [PMID: 38439575 DOI: 10.1002/ajb2.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/06/2024]
Abstract
Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.
Collapse
Affiliation(s)
- Zhenling Lv
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Charles Addo Nyarko
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Vinita Ramtekey
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- ICAR-Indian Institute of Seed Science, 275103, Mau, India
| | - Helen Behn
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
7
|
Yang X, Yu S, Yan S, Wang H, Fang W, Chen Y, Ma X, Han L. Progress in Rice Breeding Based on Genomic Research. Genes (Basel) 2024; 15:564. [PMID: 38790193 PMCID: PMC11121554 DOI: 10.3390/genes15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The role of rice genomics in breeding progress is becoming increasingly important. Deeper research into the rice genome will contribute to the identification and utilization of outstanding functional genes, enriching the diversity and genetic basis of breeding materials and meeting the diverse demands for various improvements. Here, we review the significant contributions of rice genomics research to breeding progress over the last 25 years, discussing the profound impact of genomics on rice genome sequencing, functional gene exploration, and novel breeding methods, and we provide valuable insights for future research and breeding practices.
Collapse
Affiliation(s)
- Xingye Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Shicong Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Yanqing Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Longzhi Han
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Lu M, Zhou L, Gui JF. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. SCIENCE CHINA. LIFE SCIENCES 2024; 67:449-459. [PMID: 38198030 DOI: 10.1007/s11427-023-2486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Li X, Huang X, Wen M, Yin W, Chen Y, Liu Y, Liu X. Cytological observation and RNA-seq analysis reveal novel miRNAs high expression associated with the pollen fertility of neo-tetraploid rice. BMC PLANT BIOLOGY 2023; 23:434. [PMID: 37723448 PMCID: PMC10506311 DOI: 10.1186/s12870-023-04453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| | - Xu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Minsi Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Wei Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanmou Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Mohammadi V, Talebi S, Ahmadnasab M, Mollahassanzadeh H. The effect of induced polyploidy on phytochemistry, cellular organelles and the expression of genes involved in thymol and carvacrol biosynthetic pathway in thyme ( Thymus vulgaris). FRONTIERS IN PLANT SCIENCE 2023; 14:1228844. [PMID: 37780500 PMCID: PMC10540446 DOI: 10.3389/fpls.2023.1228844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Induced polyploidy usually results in larger vegetative and reproductive plant organs. In order to study the effect of chromosome doubling on Thymus vulgaris, three levels of colchicine concentration including 0.1, 0.3 and 0.5% (w/v) were applied for 6, 12 and 24 hours on apical meristem of 2- and 4-leaf seedlings. Ploidy level was evaluated by flow cytometry and microscopic chromosome counting. Chemical composition of essential oils extracted by hydro-distillation was analyzed by gas Chromatography/mass spectrometry (GC/MS) and gas Chromatography (GC). The application of 0.3% colchicine at 4-leaf seedling for 6 hours resulted in the highest survival rate and the highest number of tetraploid plants. Cytogenetic and flow cytometry analyses confirmed the increase of chromosome number from 2n=2x=30 in diploids to 2n=4x=60 in induced tetraploids. Tetraploid plants had larger leaves, taller and thicker stems, dense branching, longer trichome, larger stomata, larger guard cells, and decreased number of stomata. The number of chloroplasts and mitochondria increased significantly in tetraploid plants by 1.66 and 1.63 times, respectively. The expression of CYP71D178, CYP71D180 and CYP71D181 increased in tetraploids by 3.27, 7.39 and 2.15 times, respectively, probably resulting in higher essential oil compounds, as tetraploids outyielded the diploid plants by 64.7% in essential oil, 40.9% in thymol and 18.6% in carvacrol content.
Collapse
Affiliation(s)
- Valiollah Mohammadi
- Agronomy and Plant Breeding Department, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | | | | |
Collapse
|
11
|
Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132019. [PMID: 37437486 DOI: 10.1016/j.jhazmat.2023.132019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 μM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Kamara N, Jiao Y, Huang W, Cao L, Zhu L, Zhao C, Huang X, Shivute FN, Liu X, Wu J, Shahid MQ. Comparative cytological and transcriptome analyses of ny2 mutant delayed degeneration of tapetal cells and promotes abnormal microspore development in neo-tetraploid rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1229870. [PMID: 37528969 PMCID: PMC10387629 DOI: 10.3389/fpls.2023.1229870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
We aimed to investigate the genetic defects related to pollen development and infertility in NY2, a novel tetraploid rice germplasm known as Neo-tetraploid rice. This rice variety was created through the crossbreeding and selective breeding of various autotetraploid rice lines and has previously shown high fertility. Our previous research has revealed that the NY2 gene, encoding a eukaryotic translation initiation factor 3 subunit E, regulates pollen fertility. However, the underlying mechanism behind this fertility is yet to be understood. To shed light on this matter, we performed a combined cytological and transcriptome analysis of the NY2 gene. Cytological analysis indicated that ny2 underwent abnormal tapetal cells, microspore, and middle layer development, which led to pollen abortion and ultimately to male sterility. Genetic analysis revealed that the F1 plants showed normal fertility and an obvious advantage for seed setting compared to ny2. Global gene expression analysis in ny2 revealed a total of 7545 genes were detected at the meiosis stage, and 3925 and 3620 displayed upregulation and downregulation, respectively. The genes were significantly enriched for the gene ontology (GO) term "carbohydrate metabolic process. Moreover, 9 genes related to tapetum or pollen fertility showed down-regulation, such as OsABCG26 (ATP Binding Cassette G26), TMS9-1 (Thermosensitive Male Sterility), EAT1 (Programmed cell death regulatory), KIN14M (Kinesin Motor), OsMT1a (Metallothionein), and OsSTRL2 (Atypical strictosidine synthase), which were validated by qRT-PCR. Further analyses of DEGs identified nine down-regulated transcription factor genes related to pollen development. NY2 is an important regulator of the development of tapetum and microspore. The regulatory gene network described in this study may offer important understandings into the molecular processes that underlie fertility control in tetraploid rice.
Collapse
Affiliation(s)
- Nabieu Kamara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Crop Improvement Programme, Rokupr Agricultural Research Center, Rokupr - Sierra Leone Agricultural Research Institute (SLARI), Freetown, Sierra Leone
| | - Yamin Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weicong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lichong Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lianjun Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chongchong Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fimanekeni Ndaitavela Shivute
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Multi-disciplinary Research Services, University of Namibia, Windhoek, Namibia
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Xian L, Tian J, Long Y, Ma H, Tian M, Liu X, Yin G, Wang L. Metabolomics and transcriptomics analyses provide new insights into the nutritional quality during the endosperm development of different ploidy rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1210134. [PMID: 37409294 PMCID: PMC10319422 DOI: 10.3389/fpls.2023.1210134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiaqi Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanxi Long
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huijin Ma
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Min Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guoying Yin
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Lan Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Székely Á, Szalóki T, Lantos C, Pauk J, Jancsó M. Data of germination ability of tetraploid rice lines under multiple stress factors. Data Brief 2023; 48:109235. [PMID: 37383734 PMCID: PMC10293981 DOI: 10.1016/j.dib.2023.109235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
Rice production is affected by several environmental factors, such as cold, salinity and drought stress. These unfavourable factors could have a serious impact on germination as well as on later growth, causing many types of damage. Recently, polyploid breeding can offer an alternative opportunity to enhance the yield and abiotic stress tolerance in rice breeding. This article describes some germination parameters of 11 different autotetraploid breeding lines and their parental lines under different environmental stresses. Each genotype was grown in a climate chamber under controlled conditions: 13 °C for 4 weeks in the cold test and 30/25 °C for 5 days in control, salinity (150 mM NaCl) and drought (15% PEG 6000) treatments, respectively. The germination process was monitored throughout the experiment. The average data were calculated using three replicates. This dataset contains germination raw data and three calculated germination parameters, such as median germination time (MGT), final germination percentage (FGP), and germination index (GI). These data may provide reliable support to clarify whether the tetraploid lines can exceed the performance of their diploid parental lines under germination phase or not.
Collapse
Affiliation(s)
- Árpád Székely
- Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Centre for Irrigation and Water Management, Anna-liget u. 35, Szarvas, H-5540, Hungary
| | - Tímea Szalóki
- Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Centre for Irrigation and Water Management, Anna-liget u. 35, Szarvas, H-5540, Hungary
| | - Csaba Lantos
- Cereal Research Non-profit Company, Szeged, H-6726, Hungary
| | - János Pauk
- Cereal Research Non-profit Company, Szeged, H-6726, Hungary
| | - Mihály Jancsó
- Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Centre for Irrigation and Water Management, Anna-liget u. 35, Szarvas, H-5540, Hungary
| |
Collapse
|
15
|
Lu M, Zhang QC, Zhu ZY, Peng F, Li Z, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex. Sci Bull (Beijing) 2023; 68:1038-1050. [PMID: 37173259 DOI: 10.1016/j.scib.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Can Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Lantos C, Jancsó M, Székely Á, Szalóki T, Venkatanagappa S, Pauk J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice ( Oryza sativa L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091774. [PMID: 37176830 PMCID: PMC10180916 DOI: 10.3390/plants12091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks-low induction rate, genotype dependency, albinism-restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future.
Collapse
Affiliation(s)
- Csaba Lantos
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| | - Mihály Jancsó
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Árpád Székely
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Tímea Szalóki
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Shoba Venkatanagappa
- International Rice Research Institute, DAPO Box 7777, INGER & ASEAN RiceNet and NARVI Global Networks Rice Breeding Platform (S.V.), Metro Manila 1301, Philippines
| | - János Pauk
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| |
Collapse
|
17
|
Guo H, Zhou M, Zhang G, He L, Yan C, Wan M, Hu J, He W, Zeng D, Zhu B, Zeng Z. Development of homozygous tetraploid potato and whole genome doubling-induced the enrichment of H3K27ac and potentially enhanced resistance to cold-induced sweetening in tubers. HORTICULTURE RESEARCH 2023; 10:uhad017. [PMID: 36968186 PMCID: PMC10031744 DOI: 10.1093/hr/uhad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyploid plants typically display advantages on some agronomically important traits over their diploid counterparts. Extensive studies have shown genetic, transcriptomic, and epigenetic dynamics upon polyploidization in multiple plant species. However, few studies have unveiled those alternations imposed only by ploidy level, without any interference from heterozygosity. Cultivated potato is highly heterozygous. Thus, in this study, we developed two homozygous autotetraploid lines and one homozygous diploid line in parallel from a homozygous diploid potato. We confirmed their ploidy levels using chloroplast counting and karyotyping. Oligo-FISH and genome re-sequencing validated that these potato lines are nearly homozygous. We investigated variations in phenotypes, transcription, and histone modifications between two ploidies. Both autotetraploid lines produced larger but fewer tubers than the diploid line. Interestingly, each autotetraploid line displayed ploidy-related differential expression for various genes. We also discovered a genome-wide enrichment of H3K27ac in genic regions upon whole-genome doubling (WGD). However, such enrichment was not associated with the differential gene expression between two ploidies. The tetraploid lines may exhibit better resistance to cold-induced sweetening (CIS) than the diploid line in tubers, potentially regulated through the expression of CIS-related key genes, which seems to be associated with the levels of H3K4me3 in cold-stored tubers. These findings will help to understand the impacts of autotetraploidization on dynamics of phenotypes, transcription, and histone modifications, as well as on CIS-related genes in response to cold storage.
Collapse
Affiliation(s)
| | | | | | | | - Caihong Yan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Jianjun Hu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wei He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Deying Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Bo Zhu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|
18
|
Ku T, Gu H, Li Z, Tian B, Xie Z, Shi G, Chen W, Wei F, Cao G. Developmental Differences between Anthers of Diploid and Autotetraploid Rice at Meiosis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1647. [PMID: 35807599 PMCID: PMC9268837 DOI: 10.3390/plants11131647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Newly synthetic autotetraploid rice shows lower pollen fertility and seed setting rate relative to diploid rice, which hinders its domestication and breeding. In this study, cytological analysis showed that at meiosis I stage, an unbalanced segregation of homologous chromosomes, occurred as well as an early degeneration of tapetal cells in autotetraploid rice. We identified 941 differentially expressed proteins (DEPs) in anthers (meiosis I), including 489 upregulated and 452 downregulated proteins. The DEPs identified were related to post-translational modifications such as protein ubiquitination. These modifications are related to chromatin remodeling and homologous recombination abnormalities during meiosis. In addition, proteins related to the pentose phosphate pathway (BGIOSGA016558, BGIOSGA022166, and BGIOSGA028743) were downregulated. This may be related to the failure of autotetraploid rice to provide the energy needed for cell development after polyploidization, which then ultimately leads to the early degradation of the tapetum. Moreover, we also found that proteins (BGIOSGA017346 and BGIOSGA027368) related to glutenin degradation were upregulated, indicating that a large loss of glutenin cannot provide nutrition for the development of tapetum, resulting in early degradation of tapetum. Taken together, these evidences may help to understand the differences in anther development between diploid and autotetraploid rice during meiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.K.); (H.G.); (Z.L.); (B.T.); (Z.X.); (G.S.); (W.C.)
| | - Gangqiang Cao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.K.); (H.G.); (Z.L.); (B.T.); (Z.X.); (G.S.); (W.C.)
| |
Collapse
|
19
|
Wang N, Fan X, Lin Y, Li Z, Wang Y, Zhou Y, Meng W, Peng Z, Zhang C, Ma J. Alkaline Stress Induces Different Physiological, Hormonal and Gene Expression Responses in Diploid and Autotetraploid Rice. Int J Mol Sci 2022; 23:ijms23105561. [PMID: 35628377 PMCID: PMC9142035 DOI: 10.3390/ijms23105561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Saline−alkaline stress is a critical abiotic stress that negatively affects plants’ growth and development. Considerably higher enhancements in plant tolerance to saline−alkaline stress have often been observed in polyploid plants compared to their diploid relatives, the underlying mechanism of which remains elusive. In this study, we explored the variations in morphological and physiological characteristics, phytohormones, and genome-wide gene expression between an autotetraploid rice and its diploid relative in response to alkaline stress. It was observed that the polyploidization in the autotetraploid rice imparted a higher level of alkaline tolerance than in its diploid relative. An eclectic array of physiological parameters commonly used for abiotic stress, such as proline, soluble sugars, and malondialdehyde, together with the activities of some selected antioxidant enzymes, was analyzed at five time points in the first 24 h following the alkaline stress treatment between the diploid and autotetraploid rice. Phytohormones, such as abscisic acid and indole-3-acetic acid were also comparatively evaluated between the two types of rice with different ploidy levels under alkaline stress. Transcriptomic analysis revealed that gene expression patterns were altered in accordance with the variations in the cellular levels of phytohormones between diploid and autotetraploid plants upon alkaline stress. In particular, the expression of genes related to peroxide and transcription factors was substantially upregulated in autotetraploid plants compared to diploid plants in response to the alkaline stress treatment. In essence, diploid and autotetraploid rice plants exhibited differential gene expression patterns in response to the alkaline stress, which may shed more light on the mechanism underpinning the ameliorated plant tolerance to alkaline stress following genome duplication.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Xuhong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhe Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yingkai Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yiming Zhou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Weilong Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Chunying Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
- Correspondence: ; Tel.: +86-431-845332776
| |
Collapse
|
20
|
Wang W, Tu Q, Chen R, Lv P, Xu Y, Xie Q, Song Z, He Y, Cai D, Zhang X. Polyploidization Increases the Lipid Content and Improves the Nutritional Quality of Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:132. [PMID: 35009135 PMCID: PMC8747249 DOI: 10.3390/plants11010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice (Oryza sativa L.). We compared the metabolites of a group of diploid-tetraploid japonica brown rice and a group of diploid-tetraploid indica brown rice based on liquid chromatography-tandem mass spectrometry. In total, 401 metabolites were identified; of these, between the two diploid-tetraploid groups, 180 showed opposite expression trends, but 221 showed the same trends (147 higher abundance vs. 74 lower abundance). Hierarchical cluster analysis of differential metabolites between diploid and tetraploid species showed a clear grouping pattern, in which the expression abundance of lipids, amino acids and derivatives, and phenolic acids increased in tetraploids. Further analysis revealed that the lipids in tetraploid rice increased significantly, especially unsaturated fatty acids and phospholipids. This study provides further basis for understanding the changes in rice nutritional quality following polyploidization and may serve as a new theoretical reference for breeding eutrophic or functional rice varieties via polyploidization.
Collapse
|