1
|
Di Lorenzo R, Castaldo L, Sessa R, Ricci L, Vardaro E, Izzo L, Grosso M, Ritieni A, Laneri S. Chemical Profile and Promising Applications of Cucurbita pepo L. Flowers. Antioxidants (Basel) 2024; 13:1476. [PMID: 39765805 PMCID: PMC11673392 DOI: 10.3390/antiox13121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Although edible flowers have been historically principally used due to their visual appeal and smell, the world is discovering their value as innovative and natural sources of bioactive compounds. Cucurbita pepo L. (CpL), a plant from the Cucurbitaceae family, is widely cultivated for its edible fruits and flowers, which are rich in polyphenols and carotenoids-compounds known for their potent antioxidant and anti-inflammatory properties. Despite their potential, the use of CpL flowers for skin-related applications remains underexplored. This study aimed to comprehensively analyze CpL flower extract (CpLfe), focusing on its polyphenolic and carotenoid content using, for the first time, advanced UHPLC-Q-Orbitrap HRMS and HPLC-DAD analysis. CpLfe highlighted remarkable antioxidant activity according to the DPPH, ABTS, and FRAP tests. CpLfe showed significantly reduced intracellular ROS in HaCaT (23%, p < 0.05) and protected against UVB-induced damage by lowering MMP-1 expression. CpLfe also upregulated genes crucial for skin hydration (AQP3) and barrier function (CerS2, CerS4, and CerS6). A placebo-controlled, randomized clinical trial further validated CpLfe efficacy, demonstrating marked improvements in moisture retention, wrinkle reduction, and collagen production in women aged 35-55. These findings suggested that CpL flowers could be a source of bioactive compounds recovered from edible flowers able to improve the major skin aging and photoaging features.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.G.)
| | - Lucia Ricci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Eleonora Vardaro
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.G.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (R.D.L.); (L.C.); (L.R.); (E.V.); (S.L.)
| |
Collapse
|
2
|
Zagórska-Dziok M, Mokrzyńska A, Ziemlewska A, Nizioł-Łukaszewska Z, Sowa I, Feldo M, Wójciak M. Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. Int J Mol Sci 2024; 25:10993. [PMID: 39456776 PMCID: PMC11507244 DOI: 10.3390/ijms252010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of UV radiation on skin discoloration, skin aging and the development of skin cancer is widely known. As a part of this study, the effect of extracts from three varieties of Cornus mas L. (C. mas L.) on skin cells exposed to UVA radiation was assessed. The analyses were performed on both normal and cancer skin cells. For this purpose, the potential photoprotective effects of the obtained extracts (aqueous and ethanolic) was assessed by performing two cytotoxicity tests (Alamar blue and Neutral red). Additionally, the antioxidant capacity was compared using three different assays. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe was used to evaluate the intracellular level of free radicals in cells exposed to the simultaneous action of UVA radiation and dogwood extracts. Additionally, the ability to inhibit excessive pigmentation was determined by assessing the inhibition of melanin formation and tyrosinase activity. The obtained results confirmed the strong antioxidant properties of dogwood extracts and their photoprotective effect on normal skin cells. The ability to inhibit the viability of melanoma cells was also observed. Additionally, a reduction in oxidative stress in skin cells exposed to UVA radiation and a strong inhibition of melanin formation and tyrosinase activity have been demonstrated. This study shows that dogwood extract could be a valuable cosmetic raw material that can play both a photoprotective and antihyperpigmentation role in cosmetic preparations.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
3
|
Fikry E, Mahdi I, Buğra Ortaakarsu A, Tawfeek N, Adhiambo Ochieng M, Ben Bakrim W, AO Abdelfattah M, Omari KW, Mahmoud MF, Sobeh M. Dermato-cosmeceutical properties of Pseudobombax ellipticum (Kunth) Dugand: Chemical profiling, in vitro and in silico studies. Saudi Pharm J 2023; 31:101778. [PMID: 37746045 PMCID: PMC10511495 DOI: 10.1016/j.jsps.2023.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Plant extracts and their individual components have been used to manage skin aging for several decades. Recently, the discovery of new natural bioactive agents, that not only enhance the skin health but also offer protection against various deleterious factors, such as free radicals, ultraviolet radiation, and microbial infections, has been a potential target by many researchers. The aim of the current work was to investigate the phytochemical profile of an ethanol bark extract from Pseudobombax ellipticum, and to evaluate its antioxidant, antiaging and antibacterial activities in vitro. Molecular docking and molecular dynamics studies were adopted to estimate and confirm the binding affinity of several compounds and explain their binding pattern at the binding sites of four target enzymes associated with skin aging, namely collagenase, elastase, tyrosinase, and hyaluronidase. HPLC-MS/MS analysis led to the tentative identification of 35 compounds comprising phenolic acids, and their glycosides, procyanidins and flavonoid glycosides. The extract demonstrated a promising in vitro antioxidant activity in the DPPH and FRAP assays (IC50 56.45 and 15.34 μg/mL, respectively), and was able to inhibit the aforementioned key enzymes with comparable results to the reference drugs. In addition, the extract (6.25 mg/mL) inhibited the biofilm production of Pseudomonas aeruginosa and diminished the swimming and swarming motilities. The docked compounds revealed appreciable binding energy with the tested enzymes and were stable throughout the molecular dynamic simulations. In view of this data, P. ellipticum bark can be regarded as a good candidate for prospective application in derma-cosmeceutical preparations.
Collapse
Affiliation(s)
- Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | | | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Melvin Adhiambo Ochieng
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | | | - Khaled W. Omari
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
4
|
Edorh Tossa P, Belorgey M, Dashbaldan S, Pączkowski C, Szakiel A. Flowers and Inflorescences of Selected Medicinal Plants as a Source of Triterpenoids and Phytosterols. PLANTS (BASEL, SWITZERLAND) 2023; 12:1838. [PMID: 37176893 PMCID: PMC10181404 DOI: 10.3390/plants12091838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Steroids and triterpenoids are compounds valued for their various biological and pharmacological properties; however, their content in medicinal and edible plants is often understudied. Flowers have been consumed since the ancient times as a part of traditional cuisine and as alternative medicines. Currently, the interest in medicinal and edible flowers is growing since contemporary consumers are incessantly seeking innovative natural sources of bioactive compounds. The aim of this report was the GC-MS (gas-chromatography-mass spectrometry) analysis of steroid and triterpenoid content in flowers, inflorescences and leaves of several plants (Berberis vulgaris L., Crataegus laevigata (Poir.) DC., Pulsatilla vulgaris Mill., Rosa rugosa Thunb., Sambucus nigra L. and Vinca minor L.), applied in herbal medicine in various forms, including isolated flowers (Flos), inflorescences (Inflorescentia) or aerial parts (Herba, i.e., combined flowers, leaves and stems). The most abundant source of triterpenoids was V. minor flowers (6.3 mg/g d.w.), whereas the steroids were prevailing in P. vulgaris flowers (1.8 and 1.1 mg/g). The profiles of triterpenoid acids and neutral triterpenoids in C. laevigata and S. nigra inflorescences were particularly diverse, involving compounds belonging to lupane-, oleanane- and ursane-type skeletons. The obtained results revealed that some flowers can constitute an abundant source of phytosterols and bioactive triterpenoids, valuable for utilization in functional foods, dietary supplements and cosmetic products.
Collapse
Affiliation(s)
- Pauline Edorh Tossa
- Clermont Auvergne Institut National Polytechnique, SIGMA Clermont, Campus des Cézeaux CS 20265, 63178 Aubière, France
| | - Morgan Belorgey
- Faculté de Pharmacie, Université Clermont Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand, France
| | - Soyol Dashbaldan
- School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| |
Collapse
|
5
|
Color, Antioxidant Capacity and Flavonoid Composition in Hibiscus rosa- sinensis Cultivars. Molecules 2023; 28:molecules28041779. [PMID: 36838766 PMCID: PMC9960340 DOI: 10.3390/molecules28041779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hibiscus rosa-sinensis plants are mainly cultivated as ornamental plants, but they also have food and medicinal uses. In this work, 16 H. rosa-sinensis cultivars were studied to measure their colorimetric parameters and the chemical composition of hydroethanolic extracts obtained from their petals. These extracts were characterized using UHPLC-ESI+-Obitrap-MS, and their antioxidant activity was evaluated using the ORAC assay. The identified flavonoids included anthocyanins derived from cyanidin, glycosylated flavonols derived from quercetin and kaempferol, and flavan-3-ols such as catechin and epicatechin. Cyanidin-sophoroside was the anthocyanin present in extracts of lilac, pink, orange, and red flowers, but was not detected in extracts of white or yellow flowers. The total flavonol concentration in the flower extracts was inversely proportional to the total anthocyanin content. The flavonol concentration varied according to the cultivar in the following order: red < pink < orange < yellow ≈ white, with the extract from the red flower presenting the lowest flavonol concentration and the highest anthocyanin concentration. The antioxidant activity increased in proportion to the anthocyanin concentration, from 1580 µmol Trolox®/g sample (white cultivar) to 3840 µmol Trolox®/g sample (red cultivar).
Collapse
|
6
|
Li L, Chong L, Huang T, Ma Y, Li Y, Ding H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Animal Model Exp Med 2022. [DOI: 10.1002/ame2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Liyan Li
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Lan Chong
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Tao Huang
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| | - Yunge Ma
- Pharmacy College Henan University Kaifeng PR China
| | - Yingyan Li
- Pharmacy College Henan University Kaifeng PR China
| | - Hui Ding
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| |
Collapse
|
7
|
A study on the antibacterial activity of silver nanoparticles derived from Corchorus aestuans leaves and their characterization. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Antioxidant and Antimicrobial Activity of Plant Hydrosol and Its Potential Application in Cosmeceutical Products. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Hydrosol is a residual product from the steam or hydro distillation process of abundant types of plants. It can be separated from the essential oil mixture by the liquid-liquid extraction process. Hydrosols from a variety of plants are becoming increasingly popular in cosmetology, aromatherapy, traditional pharmacy, and food sector; thus, their prospective applications should be further explored. Evidence Acquisition: Hydrosol may generally contain chemicals such as alcohol, ketone, and ester. Based on the previous studies using gas chromatography-mass spectroscopy (GC-MS) analysis, linalool, carvacrol, and α-terpineol are the major chemicals present in plant hydrosol. Results: The chemical composition is either showing antimicrobial or antioxidant properties. The antioxidant properties are important in cosmeceutical products to prevent oxidation of the cosmetic ingredients, while the antimicrobial properties maintain the quality of the cosmetics. Hitherto, hydrosol usage is still unfamiliar in the market, but several cosmetic products have been formulated using hydrosol, such as shampoo, soap, and conditioner. Conclusions: This work will review the hydrosol compound from plants, extraction methods, chemical composition, antioxidant and antimicrobial activities, and the potential of hydrosol in cosmeceutical application.
Collapse
|
9
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
10
|
Joseph I, Louis H, Okon EED, Unimuke TO, Udoikono AD, Magu TO, Maitera O, Elzagheid MI, Rhyman L, Ekeng-ita EI, Ramasami P. Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
In this research work, the extraction, characterization, device fabrication, and theoretical investigation of Hibiscus sabdariffa plant extract, for possible application in solid DSSCs, are reported. The plant extract was analyzed using FT-IR and UV–Vis spectrophotometry. Polyaniline on graphene was used as the counter electrode whereas titanium (IV) oxide was used as the photo anode for the fabricated DSSCs. The experimental results obtained for the open circuit voltage, short circuit current density, field factor, maximum power and conversion efficiency are 0.925 V, 0.073 A/cm2, 1.43, 1.04 W, and 0.044 % respectively. The excited states of anthocyanin (delphinidin) and quercetin, the most stable structures of Hibiscus sabdariffa plant extract, were studied using density functional theory method. In addition, the theoretical open circuit voltage, light harvesting efficiency, coupling constant, free energy change, and HOMO–LUMO energy gap were predicted for the photovoltaic properties. The theoretical results suggest that quercetin has relatively better photovoltaic properties and, hence, potentially a better dye for solar cell application.
Collapse
Affiliation(s)
- Innocent Joseph
- Chemistry Department , Modibbo Adama University of Technology , Yola , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Emmanuel E. D. Okon
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Akaninyene D. Udoikono
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Thomas O. Magu
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Oliver Maitera
- Chemistry Department , Modibbo Adama University of Technology , Yola , Nigeria
| | - Mohamed I. Elzagheid
- Department of Chemical and Process Engineering , Jubail Industrial College , Jubail Industrial City 31961 , Saudi Arabia
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry , Faculty of Science, University of Mauritius , Reduit , Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences , University of Johannesburg , Doornfontein, Johannesburg 2028 , South Africa
| | - Emmanuel I. Ekeng-ita
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry , Faculty of Science, University of Mauritius , Reduit , Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences , University of Johannesburg , Doornfontein, Johannesburg 2028 , South Africa
| |
Collapse
|
11
|
Willig G, Brunissen F, Brunois F, Godon B, Magro C, Monteux C, Peyrot C, Ioannou I. Phenolic Compounds Extracted from Cherry Tree (Prunus avium) Branches: Impact of the Process on Cosmetic Properties. Antioxidants (Basel) 2022; 11:antiox11050813. [PMID: 35624677 PMCID: PMC9138022 DOI: 10.3390/antiox11050813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Cherry tree branches (Prunus avium var burlat Rosaceae) are agricultural by-products that are often neglected, yet they are rich in phenolic compounds and highly appreciated for their numerous biological activities. Extracts of cherry tree branches were evaluated for their use in cosmetics, particularly for their antioxidant, anti-tyrosinase, and antimicrobial activities. Samples were obtained by accelerated solvent extraction (ASE) at different ethanol percentages and different temperatures. Fourteen phenolic compounds were identified in the extracts by mass spectrometry. Three major compounds were identified (catechin, genistin, and prunin) representing 84 wt% of the total phenolic compounds. Optimal operating conditions maximizing the content of phenolic compounds were determined using a one factor at a time (OFAT) approach (70% aqueous ethanol, 70 °C). The extract obtained under these conditions also showed the highest antioxidant and anti-tyrosinase activities, certainly due to a high catechin content. Although the antimicrobial activities of extracts are less versatile than those of synthetic molecules, they are nonetheless interesting. According to these results, the extracts of cherry tree branches could be used in cosmetics for their interesting properties.
Collapse
Affiliation(s)
- Gaëlle Willig
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Fanny Brunissen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Fanny Brunois
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Blandine Godon
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Christian Magro
- Chestnut, 26 Rue Barthélémy de Laffemas, 26000 Valence, France; (C.M.); (C.M.)
| | - Charles Monteux
- Chestnut, 26 Rue Barthélémy de Laffemas, 26000 Valence, France; (C.M.); (C.M.)
| | - Cédric Peyrot
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
- Correspondence: (C.P.); (I.I.)
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
- Correspondence: (C.P.); (I.I.)
| |
Collapse
|
12
|
Park GK, Jang W, Kim BY, Oh K, Kim YA, Kwon HJ, Kim S, Park BJ. Chemical constituents from
Hibiscus hamabo
and their antiphotoaging effects on
UVA
‐induced
CCD
‐986sk. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gwee Kyo Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Wookju Jang
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Bo Yun Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Kyung‐Eon Oh
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - You Ah. Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Hyuk Joon Kwon
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Soo‐Young Kim
- National Institute of Biological Resources Ministry of Biological Resources Incheon Republic of Korea
| | - Byoung Jun Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| |
Collapse
|
13
|
Pires EDO, Di Gioia F, Rouphael Y, Ferreira ICFR, Caleja C, Barros L, Petropoulos SA. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021; 26:6940. [PMID: 34834031 PMCID: PMC8619536 DOI: 10.3390/molecules26226940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38446 Volos, Greece
| |
Collapse
|
14
|
Pintathong P, Chomnunti P, Sangthong S, Jirarat A, Chaiwut P. The Feasibility of Utilizing Cultured Cordyceps militaris Residues in Cosmetics: Biological Activity Assessment of Their Crude Extracts. J Fungi (Basel) 2021; 7:jof7110973. [PMID: 34829260 PMCID: PMC8621739 DOI: 10.3390/jof7110973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Solid-based residues (SBRs) left from harvesting the fruiting bodies of cultured Cordyceps mushrooms are a challenge to sustainability. Therefore, in this study, the SBRs from the cultivation of Cordyceps militaris (C. militaris) via solid-state fermentation (SSF) were employed to prepare crude extracts, with the aim of considering their possible use in cosmetics. The SBRs obtained from cultivation with solid media containing defatted rice bran mixed with barley, white rice, Riceberry rice, and wheat were named SBR-B, SBR-R, SBR-Rb, and SRB-W, respectively. They were extracted with solvents of differing polarity and then evaluated for their total phenolic content (TPC), total flavonoid content (TFC), and total carbohydrate content (TCC). In addition, antioxidant and tyrosinase inhibitory activities, photoprotection, and cytotoxicity were also assessed. The results revealed that the total bioactive contents and biological capacities of crude SBR extracts were significantly influenced by the types of SBR and extraction solvent (p < 0.05). The SBR-B extracted with hot water exhibited the highest antioxidant activity (66.62 ± 2.10, 212.00 ± 3.43, and 101.62 ± 4.42 mg TEAC/g extract) when assayed by DPPH, ABTS, and FRAP methods, respectively, whereas tyrosinase inhibitory activity (51.13 ± 1.11 mg KAE/g extract) with 90.43 ± 1.96% inhibition at 1 mg/mL was excellently achieved by SBR-Rb extracted by 50% (v/v) ethanol. Correlations between bioactive contents in the crude extracts and their biological activities were mostly proven at a strong level (p < 0.01). The capability of the crude extracts to absorb UV over the range of 290–330 nm disclosed their potential roles as natural UV absorbers and boosters. Cytotoxicity analysis using fibroblast cell lines tested with hot water and 50% (v/v) ethanolic SBR extracts demonstrated safe use within a concentration range of 0.001–10 mg/mL. Interestingly, their fibroblast proliferative capacity, indicating anti-aging properties, was highly promoted. The chemical composition analyzed via LC–MS/MS techniques showed that seven phenolic acids and four flavonoids were identified in the crude SBR extracts. Furthermore, the other compounds present included nucleosides, nucleobases, amino acids, sugars, phospholipids, alkaloids, organic acids, vitamins, and peptides. Therefore, it is emphasized that SBRs from C. militaris can be a prospective source for preparing crude extracts employed in cosmetics. Lastly, they could be further utilized as multifunctional ingredients in cosmetics and cosmeceuticals.
Collapse
Affiliation(s)
- Punyawatt Pintathong
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (A.J.); (P.C.)
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: ; Tel.: +66-5-3916-839
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sarita Sangthong
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (A.J.); (P.C.)
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Areeya Jirarat
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (A.J.); (P.C.)
| | - Phanuphong Chaiwut
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (A.J.); (P.C.)
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|