1
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Li H, Dai J, Wang J, Lu C, Luo Z, Zheng X, Lu Z, Yang Z. Comparative Transcriptomic Analyses Propose the Molecular Regulatory Mechanisms Underlying 1,8-Cineole from Cinnamomum kanehirae Hay and Promote the Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation. Molecules 2023; 28:7511. [PMID: 38005233 PMCID: PMC10672923 DOI: 10.3390/molecules28227511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, a specific low-molecular compound named 1,8-cineole (cineole) from Cinnamomum kanehirae Hay was first reported to have remarkably promoted the asexual sporulation of A. cinnamomea in submerged fermentation (AcSmF). Then, RNA sequencing, real-time quantitative PCR, and a literature review were performed to predict the molecular regulatory mechanisms underlying the cineole-promoted sporulation of AcSmF. The available evidence supports the hypothesis that after receiving the signal of cineole through cell receptors Wsc1 and Mid2, Pkc1 promoted the expression levels of rlm1 and wetA and facilitated their transfer to the cell wall integrity (CWI) signal pathway, and wetA in turn promoted the sporulation of AcSmF. Moreover, cineole changed the membrane functional state of the A. cinnamomea cell and thus activated the heat stress response by the CWI pathway. Then, heat shock protein 90 and its chaperone Cdc37 promoted the expression of stuA and brlA, thus promoting sporulation of AcSmF. In addition, cineole promoted the expression of areA, flbA, and flbD through the transcription factor NCP1 and inhibited the expression of pkaA through the ammonium permease of MEP, finally promoting the sporulation of AcSmF. This study may improve the efficiency of the inoculum (spores) preparation of AcSmF and thereby enhance the production benefits of A. cinnamomea.
Collapse
Affiliation(s)
- Huaxiang Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| | - Jianing Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| | - Juanjuan Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| | - Chunlei Lu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| | - Zhishan Luo
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| | - Zhenming Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China;
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (H.L.); (J.D.); (J.W.); (C.L.); (X.Z.)
| |
Collapse
|
3
|
Hsien Li P, Shih YJ, Lu WC, Huang PH, Wang CCR. Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
4
|
Metabolomic Profiling of Different Antrodia cinnamomea Phenotypes. J Fungi (Basel) 2023; 9:jof9010097. [PMID: 36675918 PMCID: PMC9861778 DOI: 10.3390/jof9010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Antrodia cinnamomea (AC) is a precious medicinal fungus with numerous therapeutic benefits. Based on the color appearance of its fruiting bodies, AC can be divided into red AC (RAC), yellow AC (YAC), and white AC (WAC); however, the differences in their metabolomic profiles remain unknown. This study aimed to analyze the metabolomic profiles of three different AC phenotypes and examine their relationship to the color appearance of fruiting bodies. The results showed that although RAC, YAC, and WAC appear to have a relatively similar profile of index triterpenoids, their total triterpenoid contents were significantly different. Among the annotated triterpenoids, many of them were highly present in RAC but not in YAC and WAC, and the relative contents of the four ergostanes (antcamphin F, antcamphin L, antcin B, and antcin K) and one lanostane (versisponic acid D) were found to be significantly different among AC phenotypes. The metabolomic profiles of the AC fruiting bodies demonstrated a total of 140 metabolites, and 41 of them were very different among AC phenotypes. This study indicates that red, yellow, and white AC can biosynthesize the diverse structures of triterpenoids, and RAC possesses a relatively higher contents of triterpenoids and diverse unannotated metabolites than YAC and WAC.
Collapse
|
5
|
Li HX, Wang JJ, Lu CL, Gao YJ, Gao L, Yang ZQ. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia cinnamomea. Bioengineering (Basel) 2022; 9:494. [PMID: 36290462 PMCID: PMC9598228 DOI: 10.3390/bioengineering9100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection, hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods or medicines, numerous studies have focused on the isolation and identification of the bioactive compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification, and identification methods of active compounds from A. cinnamomea were summarized. The present work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.
Collapse
Affiliation(s)
- Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Juan-Juan Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chun-Lei Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|